• Title/Summary/Keyword: stiffness change

Search Result 871, Processing Time 0.027 seconds

Seismic Response of Large Space Structure with Various Substructure (하부구조의 강성변화에 따른 대공간구조물의 지진거동)

  • Kim, Gee-Cheol;Kang, Joo-Won;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.81-90
    • /
    • 2010
  • Large spatial structures have the different dynamic characteristics from general rahmen structures and many studies on dynamic behavior of it is conducted. But most studies was conducted about the particular shape of large spatial structures and, directly, the usable results of studies are very limited for seismic design of large spatial structures with the lower structure. So, this study is conducted about the truss arch structure that the basic dynamic characteristics of large spatial structure is inherent in, and the change of its seismic response is analyzed when columns have different length on both ends of it. According to the difference of column's length on both ends, the vertical acceleration response of truss arch structure is affected more than the horizontal acceleration response of it. Therefore, when the stiffness of lower structures that support the upper structure is different, the consideration of the vertical response is significantly required for the seismic design of large spatial structures.

  • PDF

Analytical Study on the Size Effect Influencing Inelastic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • The purpose of this study is to investigate the size effect on inelastic behavior of reinforced concrete bridge piers. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. To determine the size effect on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for comparison with the full-scale bridge pier behavior.

Proposal of Applying the Exercise Program for the Prevention of Work-related Chronic Low Back Pain

  • Yang, Yeong-Ae;Kim, Seong-Su;Hur, Jin-Gang;An, Sun-Joung;Kim, Hee-Soo;Cha, Su-Min;Heo, Jun;Park, Yun-Hee;Park, Bo-Ra
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.571-579
    • /
    • 2011
  • Objective: The purpose of this research is to provide exercise programs for the prevention of work related chronic back pain. Background: In order to prevent musculoskeletal disease, including proper medical care health promotion programs are needed. Method: This is a research of musculoskeletal disease looking at 618 workers working at a car engine manufacturing factory from April to July of 2008. Through questionnaire specific areas of musculoskeletal diseases experienced by the workers were identified and preventative exercise program for chronic low back pain was recommended. Result: Research showed that of the musculoskeletal disease experienced by the workers, 197 presented with low back pain, 171 presented with shoulder pain, 64 presented with neck pain and 44 presented with knee pain. The symptoms of low back pain included stiffness(143), twinge and burning sensation(24) and absence of sensation(19). Using this result 4 types of exercise programs were recommended for prevention of chronic low back pain. Conclusion: Preventative exercise programs recommended for the workers in this research is easily accessible for the workers. Use of the suggested exercise programs will inevitably decrease work related low back pain. Also 2 other recommendations were made: 1) Internal structural change may be necessary using ergonomics. 2) More exercise programs to be used to increase adaptation and tolerance of joints and muscles that are constantly used for repetitive work. Application: This study can be used to provide for the prevention of work-related Chronic Low Back pain.

Quilitative certificational plan of Gouqizi (구기자(枸杞子)의 품질인증(品質認證) 방안(方案))

  • Kim, Chan-Gu;Roh, Seong-Soo;Kil, Ki-Jeong;Lee, Young-Chul;Seo, Young-Bae
    • Journal of Haehwa Medicine
    • /
    • v.14 no.1
    • /
    • pp.23-33
    • /
    • 2005
  • Source : We can use a Lycium chinense Miller and a Lycium barbarum L. at the same time. but they only autorize Lycium barbarum L. as a source of Gouqizi. Culture : We have to culture at the central district and southward has a long term of blooming, bearing fruits and maturing in fertile soil, well drainage sandy soil. A cuttage has a advantage at producing number. and prowing and weeding has to be executed 2-3 times in a year. We fertillze 3 times a year, give a water not to be dry and have to be good at managementing drainage. Harvest : Generally it is best to be a harvested Gouqizi at summer. Process : Points of process is to protect a laceration which is made by a high heat, change color to black, well done dry the rind offruits has no a stiffness and the flesh of fruits has to be soft and freshred color. Quility : It is good that big and red fruits, thick fleshes of fruits, few seeds, soft and moist, sweet not bitter taste. A content of betain is more than 0.5%. And it must be content of ash is less than 6.0%. Contents of heavy metals has to detect less than 30 ppm and there are no reminding agriculural medinces.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Bridge Columns under Varying Axial Force (변동 축하중을 받는 철근콘크리트 교각의 내진성능평가)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.67-73
    • /
    • 2003
  • The purpose of this study is to evaluate seismic performance of reinforced concrete bridge columns under varying axial force. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for seismic performance evaluation of reinforced concrete bridge columns under varying axial force is verified by comparison with reliable experimental results.

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load (반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력)

  • 김태훈;김운학;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2002
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Form-finding of Free-form Membrane Structure based on Geometrically Non-linear Analysis and Interface method (기하학적 비선형해석을 이용한 비정형 막 구조물의 형상탐색과 인터페이스 기법)

  • Kim, Jee-In;Na, Yoo-Mi;Kang, Joo-Won;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The membrane structure maintains stable form by giving initial tension to ductile membrane and increasing the stiffness of exterior that is much adopted in the large span spatial structure by making its thickness thin. This kind of membrane structure has characteristic that can express free-form curve, so the selection of structural form is very important. So, this paper proposes the expression of free-form surface based on NURBS basis function and the finite element method considering geometrical nonlinearity for the deduction of large deformation result. Also, for minimizing the approximation of the surface that is derived from the form-finding result, the interface method that change finite element mesh to NURBS is proposed. So, the optimum surface of free-form membrane is derived.

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.