• Title/Summary/Keyword: stiffeners

Search Result 393, Processing Time 0.024 seconds

Vibration Analysis of Combined Deck Structure-Car System of Car Carriers (자동차운반선(自動車運搬船)의 갑판-차량(甲板-車輛) 연성계(聯成系)의 진동해석(振動解析))

  • S.Y.,Han;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-77
    • /
    • 1990
  • The combined deckstructure-car system of a car carrier is especially sensitive to hull girder vibrations due to mechanical excitations and wave loads. For the free and forced vibration analysis of the system, the analytical methods based on the receptance method and two schemes for efficient applications of the methods are presented. The methods are especially relevant to dynamical reanalysis of the system subject to design modification or to dynamic optimization. The deck-car system is modelled as a combined system consisting of a stiffened plate representing deck, primary structure, and attached subsystems such as pillars, additional stiffeners and damped spring-mass systems representing cars/trucks. For response calculations of the system subjected to displacement excitations along the boundaries, the support displacement transfer ratio conceptually similar to the receptance is introduced. For the verification of accuracy and calculation efficiency of the proposed methods, numerical and experimental investigations are carried out.

  • PDF

Characteristic Validation of High-damping Printed Circuit Board Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 고댐핑 적층형 전자기판의 기본 특성 검증)

  • Shin, Seok-Jin;Jeon, Su-Hyeon;Kang, Soo-Jin;Park, Sung-Woo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.383-390
    • /
    • 2020
  • Wedge locks have been widely used for spaceborne electronics for mounting or removal of a printed circuit board (PCB) during integration, test and maintenance process. However, it can basically provide a mechanical constraint on the edge of the board. Thus, securing a fatigue life of solder joint for electronic package by limiting board deflection becomes difficult as the board size increases. Previously, additional stiffeners have been applied to reduce the board deflection, but the mass and volume increases of electronics are unavoidable. To overcome the aforementioned limitation, we proposed an application of multi-layered PCB sheet with viscoelastic adhesive tapes to implement high-damping capability on the board. Thus, it is more advantageous in securing the fatigue life of package under launch environment compared with the previous approach. The basic characteristics of the PCB with the multi-layered sheet was investigated through free-vibration tests at various temperatures. The effectiveness of the proposed design was validated through launch vibration test at qualification level and fatigue life prediction of electronic package based on the test results.

Ultimate Strength tests Considering Stranding Damage (좌초손상을 고려한 최종강도 실험)

  • Lee, T.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.86-91
    • /
    • 2008
  • Ships operating in littoral sea are likely to be subjected to accidental load such as stranding. Once she has damage on the hull structure, her ultimate strength will be reduced. This paper is to investigate the effect of the stranding damage on ultimate strength of ship structure by using a series of collapse tests. For the experiment, 720 mm $\times$720 mm in section and 900mm in length of five box-girder models with stiffeners were pre- pared. Of the five, one has no damage and faur have an diamond shaped damage which represents the shape of rock section in seabed. The damage size is different between models. Among the damaged models, the damages of 3 of them were made by cutting the plate and one by pressing to represent stranding damage. Experiments were carried out under pure bending load and the applied load and displacements were recorded. The ultimate strength is reduced as the damage size increases, as expected. The largest damaged model has the damage size of 30% of breadth and its ultimate strength is reduced by 21% than that of no damaged one. The pressed one has lower ultimate strength than cut one. This might be due to the fact that the plate around the pressed damage area effect negatively on the ultimate strength.

  • PDF

Experimental Study on Buckling Restrained Knee Bracing Systems Using Bolted Channel Sections (볼팅 고정 채널 형강 보강재를 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험 연구)

  • Lee, Jin;Lee, Ki-Hak;Lee, Sung-Min;Shin, Ji-Wook;Kim, Young-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.37-46
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected 1-bay 1-story frame. The BRKB system using a bolted channel section developed was composed of a steel plate as a load-resisting core member and two channel sections as a restrainment of the local and global buckling of the core plate. The main purpose of the BRKB system is to be used as an effective tool to re-strengthen/rehabilitate old low- and mid-rise RC frame buildings, which do not have enough seismic resistance to earthquake loadings. The main variables for the test specimens were the size of the core plates, stiffeners and the use of guide plates. The test results showed that the size of the core plate, which was the main element for the load-resisting member, was the most important parameter to achieve ductile behavior under tension as well as compression, until the maximum displacement exceed twice the design drift limit given by the AISC Seismic Provisions.

Procuring the Fire Resistance Performance and Structure of Non-Refractory Coating CFT with Using the Corrugate-rib (Corrugate-rib를 활용한 무내화피복 CFT공법의 구조 및 내화성능 확보)

  • Lee, Dong-Oun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.747-754
    • /
    • 2017
  • The Concrete-Filled Tube (CFT) system was developed for its excellent structural performance, such as its good stiffness, stress and ductility, which is derived from the mechanical advantages of its composite structure. However, it is known that the flat type of reinforcing plates need stiffeners placed at a certain distance from each other to avoid buckling failure, which increases the cost accordingly. This paper investigates the contribution of the rib elements placed inside the steel tube for the purpose of increasing the bond strength between the steel and concrete and fire performance with no additional protection. The test results also demonstrate the effectiveness of the corrugated rib's shape against fire. The results of this study showed that the buckling prevention and fire resistance performance criteria were satisfied by the application of the inner surface attachment rib, due to the resulting increase in the strength of the CFT column. Therefore, it is considered that the CFT method using the corrugated rib structure reinforcement developed through this study satisfies the structural and fire resistance performance criteria without the need for a refractory coating. Future studies will be needed to make the process efficient and economical for factory production.

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

Initial Stiffness of Beam Column Joints of PCS Structural Systems (PCS 구조 시스템 접합부의 초기 강성에 대한 연구)

  • Park, Soon-Kyu;Kim, Moo-Kyung
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.271-282
    • /
    • 2008
  • Specific joint devices composed of end-plates and through bolts are under development to assemble steel beams to PC columns efficiently by dry construction method for the PCS structural system, of which major structural components are precast concrete columns and steel beams. Seismic performance of the joint devices had been evaluated by experimental tests in the previous studies and it was showed that all the performance requirements regarding to strength deterioration, stiffness degradation and energy dissipation capacity were satisfied to the criteria of ACI requirements, but the initial stiffness was not. In order to find out possible causes of the insufficient rigidity of the joint devices and provide the proper measures to improve the performance of the joint accordingly, numerical analyses were carried out by using ABAQUS. Parameters, such as thickness of neoprene pad, conditions of surface between PC column and end-plate, magnitude of pretension forces of through bolts, stiffness of end-plate were taken into consideration. As the result, it was found that the rigidity of the PCS system was negatively affected by the magnitude of initial gaps between PC columns and end-plates, and insufficient stiffness of neoprene fillers and end plates. In order to improve the initial stiffness performance of the joints, measures such as increase of the magnitude of pretension forces on through bolts and increase of the stiffness of end-plate by reducing the bolt pitch and providing adequate stiffeners are recommended.

Retardation Effect on the Breach of the Earth Filled Embankment Using the Stiffener During Overtopping (흙댐 제체의 보강재 설치에 따른 월류붕괴 지연효과)

  • Joo, Yo Han;Yeo, Chang-Geon;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1377-1387
    • /
    • 2013
  • Most embankment of the reservoirs (99.1 %) have been constructed in the earth filled type in Korea because the construction of this type is less expensive and simpler than others such as concrete one. However, it has to be reinforced the slope to prevent the breach due to overtopping or piping under unexpected flood conditions. This study has been analyzed the retardation effect using three types (L, T, $L^*$ shape) of stiffener in order to reinforce embankment when they are collapsed by overtopping flow. Experimental results showed that L-type stiffener is the most effective in delaying the breaching of embankment and reducing the soil erosion when compared with others. The reinforced embankment breaching showed that time delay was occurred about 1.73 to 2.29 times and the peak flowrate was reduced compared to non-stiffener embankments due to energy dissipation by collision and less soil erosion. The embankment breaching mostly leads to major damages because of the lack of repair time. Thus, since these stiffeners can resist the rapid breach, it would be possible to earn the time to emergency repair and lifesaving, as well as reduction of damages of embankment in downward region with decreasing peak flowrate. Results from this study would be used for the basis when establishing the emergency action plan for the reservoirs on the verge of hazard.

A Study on the Prediction System of Block Matching Rework Time (블록 정합 재작업 시수 예측 시스템에 관한 연구)

  • Jang, Moon-Seuk;Ruy, Won-Sun;Park, Chang-Kyu;Kim, Deok-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • In order to evaluate the precision degree of the blocks on the dock, the shipyards recently started to use the point cloud approaches using the 3D scanners. However, they hesitate to use it due to the limited time, cost, and elaborative effects for the post-works. Although it is somewhat traditional instead, they have still used the electro-optical wave devices which have a characteristic of having less dense point set (usually 1 point per meter) around the contact section of two blocks. This paper tried to expand the usage of point sets. Our approach can estimate the rework time to weld between the Pre-Erected(PE) Block and Erected(ER) block as well as the precision of block construction. In detail, two algorithms were applied to increase the efficiency of estimation process. The first one is K-mean clustering algorithm which is used to separate only the related contact point set from others not related with welding sections. The second one is the Concave hull algorithm which also separates the inner point of the contact section used for the delayed outfitting and stiffeners section, and constructs the concave outline of contact section as the primary objects to estimate the rework time of welding. The main purpose of this paper is that the rework cost for welding is able to be obtained easily and precisely with the defective point set. The point set on the blocks' outline are challenging to get the approximated mathematical curves, owing to the lots of orthogonal parts and lack of number of point. To solve this problems we compared the Radial based function-Multi-Layer(RBF-ML) and Akima interpolation method. Collecting the proposed methods, the paper suggested the noble point matching method for minimizing the rework time of block-welding on the dock, differently the previous approach which had paid the attention of only the degree of accuracy.

Improved Transmission Path Visualization of Vibration Power Flow for Stiffened Plate Using Streamlines Representation (유선 표현법을 이용한 보강판의 진동파워흐름에 대한 개선된 전달경로 가시화)

  • Fawazi, Noor;Jeong, Un-Chang;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.692-700
    • /
    • 2012
  • Vibration intensity has been used to localize vibration source of a vibrating system. Not only that, vibration intensity has also been used for structural diagnostic in identifying crack and mounted stiffeners. To clearly identify the location of vibration source and understand the changes of energy transmission path, clear flow visualization is required. Most of previous works used vectors to indicate the magnitude and direction of emerging vibration energy and transmission paths. However, due to the large surface area of a plate like-structure, clear transmission paths cannot be achieved using vector visualization. This becomes an issue when detail vector flow at all locations of the whole plate surface is required. In this study, streamlines visualization is used to clearly indicate the power flow transmission path at all plate surface. By using streamlines representation, not only clear transmission paths are obtained, but also improves the vector visualization which helps us to understand the changes of the energy flow especially for stiffened plates. In this study, vibration intensity computation is firstly compared to previous work to validate the vibration intensity computation. To clearly show the power flow transmission paths, streamlines representation is shown. This representation overcomes the unclear vector direction especially for stiffened plates. Different pattern of energy transmission path can be observed using streamlines representation for stiffened and unstiffened plate. The complex streamlines pattern can also be observed at high resonance frequencies which is unclear by using vector representation.