• 제목/요약/키워드: stiffened

검색결과 595건 처리시간 0.022초

균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성 (Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제30권1호
    • /
    • pp.25-35
    • /
    • 2018
  • 균일 외압을 받는 링 보강 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법(GMNIA)을 적용하여 외압강도를 평가하였다. 링 보강 쉘의 기하학적 초기결함의 진폭, 반경 대 두께 비, 링 보강재 간격 대 반경비 등이 외압강도에 미치는 영향을 분석하였으며, Eurocode 3과 DNV 설계기준에 의한 설계 외압 강도와 유한 요소해석으로 구한 외압강도를 비교 평가하였다. 기하학적 초기결함의 형상은 선형탄성 좌굴해석에 의한 좌굴모드를 적용하였으며 보강 쉘의 반경 대 두께 비는 250~500범위를 고려하였다.

Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique

  • Cho, Dae-Seung;Choi, Tae-Muk;Kim, Jin-Hyeong;Vladimir, Nikola
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.583-595
    • /
    • 2018
  • Stiffened panels are widely used in naval architecture and ocean engineering, and knowledge about their dynamic behaviour represents important issue in the design procedure. Ordinary vibration analysis consists of natural frequencies and mode shapes determination and can be extended to forced response assessment, while the Structural Intensity (SI) analysis, assessing magnitude and direction of vibrational energy flow provides information on dominant transmission paths and energy distribution including sink positions. In this paper, vibrational energy flow in stiffened panels under harmonic loading is analyzed by the SI technique employing the finite element method. Structural intensity formulation for plate and beam element is outlined, and developed system combining in-house code and general finite element tool is described. As confirmed within numerical examples, the developed tool enables separation of SI components, enabling generation of novel SI patterns and providing deeper insight in the vibrational energy flow in stiffened panels, comparing to existing works.

Identification and suppression of vibrational energy in stiffened plates with cutouts based on visualization techniques

  • Li, Kai;Li, Sheng;Zhao, De-You
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.395-410
    • /
    • 2012
  • The visualizing energy flow and control in vibrating stiffened plates with a cutout are studied using finite element method. The vibration intensity, vibration energy and strain energy distribution of stiffened plates with cutout at different excitation frequencies are calculated respectively and visualized for the various cases. The cases of different size and boundaries conditions of cutouts are also investigated. It is found that the cutout or opening completely changes the paths and distributions of the energy flow in stiffened plate. The magnitude of energy flow is significantly larger at the edges near the cutout boundary. The position of maximum strain energy distribution is not corresponding to the position of maximum vibrational energy. Furthermore, the energy-based control using constrained damping layer (CDL) for vibration suppression is also analyzed. According to the energy distribution maps, the CDL patches are applied to the locations that have higher energy distribution at the targeted mode of vibration. The energy-based CDL treatments have produced significant attenuation of the vibration energy and strain energy. The present energy visualization technique and energy-based CDL treatments can be extended to the vibration control of vehicles structures.

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • 한국해양공학회지
    • /
    • 제34권1호
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

振動法 에 의한 補强平板 의 剛性測定硏究 (A Study on the Measurement of Rigidities of Stiffened Plates by Vibration Method)

  • 김천욱;남준우;원종진;한승봉
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.174-180
    • /
    • 1985
  • 본 논문에서는 등방성 외팔판의 강성계수 및 공유진동수의 관계로 부터 외팔 보강평판의 강성계수와 고유 진동수와의 관계식을 유도하였으며 고유 진동수를 측정하 여 강성계수를 산정하였다. 위의 강성계수 산정법의 타당성을 입증하기 위하여 외팔 판에 집중하중 작용시 하중, 처짐, 강성계수의 관계식을 유도하고 외팔판 처짐 실험을 하였다. 이론해가 없는 임의보강평판에 대해서도 진동수 측정에 의해 강성계수를 산 정하고, 이를 외팔판 처짐실험에 적용하여 처짐의 이론치와 실험치를 비교 검토하였다.

고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구 (A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

강관 K형 접합부의 보강효과에 관한 연구 (An Study on the Stiffened Effect of K-type Tubular Connection)

  • 김우범;이영정;김갑순;정수영
    • 한국강구조학회 논문집
    • /
    • 제13권6호
    • /
    • pp.609-619
    • /
    • 2001
  • 리브로 보강된 가셋트-강관 접합부의 거동은 매우 복잡한 양상을 나타내므로 이론적인 방법으로는 극한강도평가가 불가능하다. 그러므로 본 연구에서는 리브로 보강된 K형 가셋트-강관접합부의 유한요소 해석결과를 실험결과와 비교 분석하여 그 타당성을 입증하고, 유한요소해석에 의한 접합부의 거동을 파악하고 극한강도를 추정하였다. 또한 횡력비, 편심률, 가셋트 길이를 고려한 유한요소해석으로부터 보강효과를 파악하였으며, 보강플레이트의 길이, 높이, 두께의 변화에 따른 해석을 수행하여 합리적인 보강방법을 제안하였다.

  • PDF

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

강체요소법(剛體要素法)에 의한 보강판(補剛板)의 붕괴해석(崩壞解析) (Collapse Analysis of Stiffened Plates by Rigid Element Method)

  • 임상전;장창두;김남철
    • 대한조선학회지
    • /
    • 제25권4호
    • /
    • pp.47-57
    • /
    • 1988
  • A new discrete method using idealized rigid body-spring model is introduced. This rigid element method is known to be more efficient and accurate than the finite element method in the inelastic range of structural analysis owing to simplified stress-strain and strain-displacement relations This kind of physical concept using idealized rigid model has been already applied among structural engineers to some problems such as rigid-plastic analysis or plastic design considering rigid bodies and plastic hinges. However the most rigorous and systematic research has been recently performed by T. Kawai et al.[1]. In this paper, an attempt is made to analyze the collapse behavior of stiffened plates under lateral loading by some modification and expansion of Kawai's rigid element approach to the collapse of plates without stiffener. Stiffened plates are treated as orthotropic plates which have equivalent bending rigidities. By employing Morley's plate element resubdivision technique, variety is given to mesh-division styles which have greate effect on the accuracy of numerical results. Some examples are shown to verify the validity of applying rigid element method to the ultimate strength analysis of stiffened plates. It is clarified that lateral deflections and detailed collapse patterns up to the ultimate state of stiffened plates can be easily obtained by the present approach.

  • PDF

탄성지지부가물(彈性支持附加物) 또는 집중질량(集中質量)을 갖는 보강판(補剛板)의 진동해석(振動解析) (Vibration Analysis of Stiffened Plates having a Resiliently Mounted or Concentrated Mass)

  • 한성용;김극천
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.23-32
    • /
    • 1986
  • By virtue of an application of the receptance method, simplified formulae to calculate natural frequencies of stiffened plates having a resiliently mounted or concentrated mass are obtained. Some numerical results are compared with those based on Lagrange's equation of motion and with experimental results. For the problem formulation the stiffened plate is reduced to an equivalent orthotropic plate, a resiliently mounted mass to a spring-mass system, and mode shapes of the plate are assumed with comparison functions consisting of Euler beam functions. The proposed formulae give results in good conformity to both numerical results based on Lagrange's equation of motion and experimental results for in-phase modes of the coupled system. For out-of-phase modes the conformity is assured only in case that the natural frequency of the attached system is less than a half of that the stiffened plate. It is also found that a resiliently mounted mass having its own natural frequency of about two or more times that of the stiffened plate can be reduced to a concentrated mass with assurance of a few percent error in the frequency.

  • PDF