Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2017.11.003

Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique  

Cho, Dae-Seung (Pusan National University, Department of Naval Architecture and Ocean Engineering)
Choi, Tae-Muk (Createch Co. Ltd.)
Kim, Jin-Hyeong (Createch Co. Ltd.)
Vladimir, Nikola (University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.10, no.5, 2018 , pp. 583-595 More about this Journal
Abstract
Stiffened panels are widely used in naval architecture and ocean engineering, and knowledge about their dynamic behaviour represents important issue in the design procedure. Ordinary vibration analysis consists of natural frequencies and mode shapes determination and can be extended to forced response assessment, while the Structural Intensity (SI) analysis, assessing magnitude and direction of vibrational energy flow provides information on dominant transmission paths and energy distribution including sink positions. In this paper, vibrational energy flow in stiffened panels under harmonic loading is analyzed by the SI technique employing the finite element method. Structural intensity formulation for plate and beam element is outlined, and developed system combining in-house code and general finite element tool is described. As confirmed within numerical examples, the developed tool enables separation of SI components, enabling generation of novel SI patterns and providing deeper insight in the vibrational energy flow in stiffened panels, comparing to existing works.
Keywords
Energy flow concept; Structural intensity; Vibration analysis; Stiffened panel; Finite element method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cho, D.S., Kim, B.H., Vladimir, N., Choi, T.M., 2015a. Natural vibration analysis of rectangular bottom plate structures in contact with fluid. Ocean Eng. 103, 171-179.   DOI
2 Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M., 2015b. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin-Walled Struct. 90, 182-190.   DOI
3 Cho, D.S., Choi, T.M., Kim, J.H., Vladimir, N., 2016. Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method. Thin-Walled Struct. 109, 1-12.   DOI
4 Eck, T., Walsh, S.J., 2012. Measurement of vibrational energy flow in a plate with high energy flow boundary crossing using electronic speckle pattern interferometry. Appl. Acoust 73, 936-951.   DOI
5 Gavric, L., Pavic, G., 1993. A finite element method for computation of structural intensity by the normal mode approach. J. Sound Vib. 164, 29-43.   DOI
6 Hambric, S.A., 1990. Power flow and mechanical intensity calculations in structural finite element analysis. J. Vib. Acoust. 112, 542-549.   DOI
7 Hambric, S.A., Szwerc, R.P., 1999. Prediction of structural intensity fields using solid finite element. Noise Control Eng. J. 47, 209-217.   DOI
8 Khun, M.S., Lee, H.P., Lim, S.P., 2004. Structural intensity in plates with multiple discrete and distributed spring-dashpot systems. J. Sound Vib. 276, 627-648.   DOI
9 Lee, H.P., Lim, S.P., Khun, M.S., 2006. Diversion of energy flow near crack tips of a vibrating plate using the structural intensity technique. J. Sound Vib. 296, 602-622.   DOI
10 Liu, Z.S., Lee, H.P., Lu, C., 2005. Structural intensity study of plates under lowvelocity impact. Int. J. Impact Eng. 31, 957-975.   DOI
11 MSC Software, 2010a. MSC/Patran-PAT304 (PCL and Customization). Macneal-Schwendler Co., Newport Beach, CA.
12 Pavic, G., 1987. Structural surface intensity: an alternative approach in vibration analysis and diagnosis. J. Sound Vib. 115, 405-422.   DOI
13 Navazi, H.M., Nokhbatolfoghahaei, A., Ghobad, Y., Haddadpour, H., 2016. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis. J. Sound Vib. 375, 289-307.   DOI
14 Noiseux, D.U., 1970. Measurement of power flow in uniform beams and plates. J. Acoust. Soc. Am. 47, 238-247.   DOI
15 Pavic, G., 1976. Measurement of structure borne wave intensity, Part I: formulation of the methods. J. Sound Vib. 49, 221-230.   DOI
16 Park, Y.H., Hong, S.Y., 2008. Vibrational power flow models for transversely vibrating finite Mindlin plate. J. Sound Vib. 317, 800-840.   DOI
17 Pascal, J.C., Carniel, X., Li, J.F., 2006. Characterisation of a dissipative assembly using structural intensity measurements and energy conservation equation. Mech. Syst. Signal Process. 20, 1300-1311.   DOI
18 Tian, X., Liu, G., Gao, Z., Chen, P., Mu, W., 2017. Crack detection in offshore platform based on structural intensity approach. J. Sound Vib. 389, 236-249.   DOI
19 Petrone, G., De Vendittis, M., De Rosa, S., Franco, F., 2016. Numerical and experimental investigations on structural intensity in plates. Compos. Struct. 140, 94-105.   DOI
20 Saijyou, K., Yoshikawa, S., 1996. Measurement of structural and acoustic intensities using near-field acoustical holography. Jpn. J. Appl. Phys. 35, 3167-3174.   DOI
21 MSC Software, 2010b. MD Nastran 2010 Dynamic Analysis User's Guide. Macneal-Schwendler Co., Newport Beach, CA.
22 Xu, X.D., Lee, H.P., Lu, C., 2004a. The structural intensities of composite plates with a hole. Compos. Struct. 65, 493-498.   DOI
23 Tran, T.Q.N., Lee, H.P., Lim, S.P., 2007. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration. Compos. Struct. 78, 70-83.   DOI
24 Troitsky, M.S., 1976. Stiffened Plates: Bending, Stability and Vibrations. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
25 Verheij, J.W., 1980. Cross spectral density methods for measuring structure borne power flow on beams and pipes. J. Sound Vib. 70, 133-139.   DOI
26 Xu, X.D., Lee, H.P., Lu, C., 2004b. Numerical study on energy transmission for rotating hard disk systems by structural intensity technique. Int. J. Mech. Sci. 46, 639-652.   DOI
27 Cho, D.S., Chung, S.M., Kim, J.H., 2003. Numerical analysis on the affection of lumped attachments to the vibration power flow in cross-stiffened plate. J. Soc. Nav. Arch. Korea 40(1), 36-46.   DOI
28 Xu, X.D., Lee, H.P., Wang, Y.Y., Lu, C., 2004c. The energy flow analysis in stiffened plates of marine structures. Thin-Walled Struct. 42, 979-994.   DOI
29 Chen, Y., Jin, G., Zhu, M., Liu, Z., Du, J., Li, W.L., 2012. Vibration behaviours of a boxtype structure built up by plates and energy transmission through the structure. J. Sound Vib. 331, 849-867.   DOI
30 Cho, D.S., Kim, S.S., Jung, S.M., 1998. Structural intensity analysis of stiffened plate using assumed mode method. J. Soc. Nav. Arch. Korea 35(4), 76-86.
31 Cho, D.S., Vladimir, N., Choi, T.M., 2014. Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings. Int. J. Nav. Archit. Ocean Eng. 6, 763-774.   DOI