• 제목/요약/키워드: sterol regulatory element binding protein 1

검색결과 150건 처리시간 0.022초

체감의이인탕(體減薏苡仁湯)의 항비만 효과 연구 (Study on Anti-obesity Effect of Chegameuiin-tang)

  • 박태용;신병철;공재철;송미영;김은경;서은아;류도곤;권강범
    • 동의생리병리학회지
    • /
    • 제22권3호
    • /
    • pp.642-648
    • /
    • 2008
  • The aim of this study is to investigate Chegameuiin-tang water extracts (CETE) have potent anti-obesity activities in a high fat diet-induced obesity mouse model. In this study, we designed three group (normal diet group, high fat diet group, high fat diet plus CETE group for 13-week oral administration). Increases in body weight and fat storage were inhibited by 13-week oral administration of CETE at a 500 mg/kg concentration in this animal model, while the amount of food intake was not affected. Results from blood lipid analysis showed that the levels of triglyceride, total cholesterol and LDL-cholesterol were significantly lowered by CETE administration, also HDL-cholesterol was increased more than high fat diet-induced obese mouse. To understand the underlying mechanism at the molecular level, the effects of CETE were examined on the expression of the genes involved in lipogenesis and lipolysis by real-time PCR. In epididymal fat of CETE-treated mice, the mRNA level of lipogenic genes such as sterol regulatory element binding protein 1 and fatty acid synthase were decreased, which was well correlated with the reduction of the epididymal fat weight. Also, CETE administration inhibited decreases of the hormone-sensitve lipase and lipoprotein lipase mRNA expressions, which are genes related with lipolysis. These results suggest that Chegameuiin-tang may have great potential as a novel anti-obesity agent.

3T3-L1 지방세포에서 진귤 잎 유래 polymethoxyflavones 다량 함유 분획물(PRF)의 항지방생성 및 지방분해 효과 (The Anti-adipogenic and Lipolytic Effect of Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf Extract in 3T3-L1 Cells)

  • 진영준;장미경;김재원;강민영;고희철;김세재
    • 생명과학회지
    • /
    • 제32권7호
    • /
    • pp.542-549
    • /
    • 2022
  • Polymethoxyflavones (PMFs)는 주로 감귤류에서 발견되는 플라보노이드로 다양한 생리활성을 나타낸다고 알려져 있다. 본 연구에서는 제주재래귤인 진귤(Citrus sunki Hort. ex Tanaka)에서 PMFs를 다량 함유하는 분획물(PMFs-rich fraction, PRF)을 획득하는 방법을 확립하여 3T3-L1 세포에서 지방대사에 미치는 영향을 분석하였다. PRF는 3T3-L1 전구지방세포의 지방생성(lipogenesis)을 농도 의존적으로 억제하였다. PRF는 peroxisome proliferator-activated receptor 𝛾 (PPAR𝛾)와 CCAAT/enhancer binding protein 𝛼 (CEBP𝛼) 발현을 억제함으로써 fatty acid synthase (FAS), adipocyte fatty-acid-binding protein 2 (aP2)의 발현을 억제하여 지방생성을 억제함을 확인할 수 있었다. 성숙한 3T3-L1 지방세포에 PRF를 처리하면, cAMP 의존성 protein kinase A (PKA)/sterol regulatory element-binding protein 1 (HSL)의 활성화가 일어나 지방분해(lipogenesis)는 촉진됨을 확인할 수 있었다. 그리고 PRF는 AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC)의 인산화를 증가시켜 지방산화를 촉진할 수 있음을 확인하였다. 이 연구결과는 진귤 잎 유래 PRF는 3T3-L1 전구지방세포의 분화를 억제하고 성숙한 지방세포에서 지방분해 및 지방산 산화를 촉진하는 활성을 나타내어 항비만 소재로서의 활용가능성을 제시하였다.

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

Psidium guajava L. leaf extract inhibits adipocyte differentiation and improves insulin sensitivity in 3T3-L1 cells

  • Choi, Esther;Baek, Seoyoung;Baek, Kuanglim;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • 제15권5호
    • /
    • pp.568-578
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Psidium guajava L. (guava) leaves have been shown to exhibit hypoglycemic and antidiabetic effects in rodents. This study investigated the effects of guava leaf extract on adipogenesis, glucose uptake, and lipolysis of adipocytes to examine whether the antidiabetic properties are mediated through direct effects on adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with 25, 50, 100 ㎍/mL of methanol extract from guava leaf extract (GLE) or 0.1% dimethyl sulfoxide as a control. Lipid accumulation was evaluated with Oil Red O Staining and AdipoRed assay. Immunoblotting was performed to measure the expression of adipogenic transcription factors, fatty acid synthase (FAS), and AMP-activated protein kinase (AMPK). Glucose uptake under basal or insulin-stimulated condition was measured using a glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose. Lipolysis from fully differentiated adipocytes was measured by free fatty acids release into the culture medium in the presence or absence of epinephrine. RESULTS: Oil Red O staining and AdipoRed assay have shown that GLE treatment reduced lipid accumulation during adipocyte differentiation. Mitotic clonal expansion, an early essential event for adipocyte differentiation, was inhibited by GLE treatment. GLE inhibited the expression of transcription factors involved in adipocyte differentiation, such as peroxisome proliferator-activated receptor 𝛄 (PPAR𝛄), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP-1c). FAS expression was also decreased while the phosphorylation of AMPK was increased by GLE treatment. In addition, GLE increased insulin-induced glucose uptake into adipocytes. In lipid-filled mature adipocytes, GLE enhanced epinephrine-induced lipolysis but reduced basal lipolysis dose-dependently. CONCLUSIONS: The results show that GLE inhibits adipogenesis and improves adipocyte function by reducing basal lipolysis and increasing insulin-stimulated glucose uptake in adipocytes, which can be partly associated with antidiabetic effects of guava leaves.

Assessment of Adipocyte Differentiation and Maturation-related Gene Expression in the Epididymal Fat of Estrogen Receptor α Knockout (ERαKO) Mouse during Postnatal Development Period

  • Cheon, Yong-Pil;Ko, CheMyong;Lee, Ki-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.287-296
    • /
    • 2020
  • The absence of functional estrogen receptor α (Esr1) results in an overgrowth of the epididymal fat, as observed in estrogen receptor α knockout (ERαKO) mouse. The present research was aimed to evaluate expression of various molecules associated with adipocyte differentiation and maturation in the epididymal fat of ERαKO mouse at several postnatal ages by using quantitative real-time polymerase chain reaction. The highest transcript levels of all molecules were detected at 12 months of postnatal age, except leptin which the mRNA level was increased at 5 months of age and was unchanged until 12 months of age. The expression levels of CCAAT enhancer binding protein (Cebp) alpha, androgen receptor, and lipoprotein lipase were decreased at 5 months of age but increased at about 8 months of age. The mRNA levels of Cebp gamma and sterol regulatory element binding transcription factor 1 remained steady until 8 months of age. Continuous increases of transcript levels during postnatal period were found in Cebp beta, estrogen receptor (ER) beta, fatty acid binding protein 4, and delta like non-canonical Notch ligand 1. The increases of peroxisome proliferator-activated receptor gamma and adiponectin mRNA levels were detected as early as 8 months of age. The levels of fatty acid synthase and resistin transcript at 5 and 8 months of age were lower than that at 2 months of age. These findings show the aberrant expression patterns of genes related to adipocyte differentiation and maturation in the postnatal epididymal fat pad by the disruption of ER alpha function.

Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice

  • Park, Miey;Yoo, Jeong-Hyun;Lee, You-Suk;Park, Eun-Jung;Lee, Hae-Jeung
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.350-361
    • /
    • 2020
  • Background: Black ginseng (BG) is a type of Korean ginseng prepared by steaming and drying raw ginseng to improve the saponin content. This study examined the effects of BG on nonalcoholic fatty liver disease (NAFLD) in HepG2 cells and diet-induced obese mice. Methods: HepG2 cells were treated with free fatty acids to induce lipid accumulation before supplementation with BG. NAFLD-induced mice were fed different doses (0.5%, 1%, and 2%) of BG for 8 weeks. Results: BG significantly reduced lipid accumulation and expression of lipogenic genes, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein-1c, and fatty acid synthase in HepG2 cells, and the livers of mice fed a 45% high-fat diet with 10% fructose in the drinking water (HFHF diet). BG supplementation caused a significant reduction in levels of aspartate aminotransferase and alanine aminotransferase, while antioxidant enzymes activities were significantly increased in 45% high-fat diet with 10% fructose in the drinking water diet-fed mice. Expression of proliferator-activated receptor alpha and carnitine palmitoyltransferase I were upregulated at the transcription and translation levels in both HepG2 cells and diet-induced obese mice. Furthermore, BG-induced phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase in both models, suggesting its role in AMP-activated protein kinase activation and the acetyl CoA carboxylase signaling pathway. Conclusion: Our results indicate that BG may be a potential therapeutic agent for the prevention of NAFLD.

Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice

  • Kang, Ji-Hye;Lee, Hyun-Ah;Kim, Hak-Ju;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: In this study, we investigated whether Gelidium amansii extract (GAE) ameliorates obesity in diet-induced obese (DIO) mice. MATERIALS/METHODS: The mice were maintained on a high-fat diet (HD) for 5 weeks to generate the DIO mouse model. And then mice fed HD plus 0.5% (GAE1), 1% (GAE2) or 2% (GAE3) for 8 weeks. RESULTS: After the experimental period, GAE-supplemented groups were significantly lower than the HD group in body weight gain and liver weight. GAE supplemented groups were significantly lower than the HD group in both epididymal and mesenteric adipose tissue mass. The plasma leptin level was significantly higher in the HD group than in GAE-supplemented groups. The leptin level of HD+GAE3 group was significantly lower than that of the HD+conjugated linoleic acid (CLA) group. In contrast, plasma adiponectin level of the HD group was significantly lower than those of HD+GAE2 and HD+GAE3 groups. The expression levels of adipogenic proteins such as fatty acid synthase, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer binding protein ${\alpha}$ in the GAE supplemented groups were significantly decreased than those in HD group, respectively. In addition, the expression levels of HD+GAE2 and HD+GAE3 groups are significantly decreased compared to those of HD+CLA group. On the contrary, the expression levels of hormone-sensitive lipase and phospho-AMP-activated protein kinase, proteins associated with lipolysis, were significantly increased in the GAE supplemented groups compared to those in the HD group. HD+GAE3 group showed the highest level among the GAE supplemented groups. CONCLUSIONS: These results suggested that GAE supplementation stimulated the expressions of lipid metabolic factors and reduced weight gain in HD-fed C57BL/6J obese mice.

Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation

  • Laxmi Sen Thakuri;Chul Min Park;Jin Woo Park;Hyeon-A Kim;Dong Young Rhyu
    • ALGAE
    • /
    • 제38권1호
    • /
    • pp.81-92
    • /
    • 2023
  • Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210℃). The total phenolic content of GCSW extract at 210℃ (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.

Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content

  • Berger, Jean-Mathieu;Moon, Young-Ah
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.116-125
    • /
    • 2021
  • Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.

Anti-adipogenic and Pro-osteoblastogenic Activities of Spergularia marina Extract

  • Karadeniz, Fatih;Kim, Jung-Ae;Ahn, Byul-Nim;Kim, Mihyang;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제19권3호
    • /
    • pp.187-193
    • /
    • 2014
  • This is an Open Access article distributed under the terms of the Creative Commons Attribution For decades, Spergularia marina, a local food that is popular in South Korea, has been regarded as a nutritious source of amino acids, vitamins, and minerals. While several halophytes are reported to possess distinct bioactivities, S. marina has yet to be promoted as a natural source of bioactives. In this study, the effects of S. marina on the adipogenic differentiation of 3T3-L1 fibroblasts and the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts and C2C12 myoblast cells were evaluated. The anti-adipogenic effect of S. marina was assessed by measuring lipid accumulation and adipogenic differentiation marker expression. S. marina treatment significantly reduced lipid accumulation and notably decreased the gene levels of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element binding protein 1c. In addition, S. marina enhanced osteoblast differentiation, as indicated by increased alkaline phosphatase activity and increased levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin, and type I collagen. In conclusion, S. marina could be a source of functional food ingredients that improve osteoporosis and obesity. Further studies, including activity-based fractionation, will elucidate the mechanism of action and active ingredients of S. marina, which would provide researchers with a better understanding of the nutraceutical and therapeutic applications of S. marina.