• Title/Summary/Keyword: sterilization method

Search Result 274, Processing Time 0.023 seconds

Resonance Inverter Power System for Sterilization Effective Improvement of Plasma (플라즈마 살균 효과 향상을 위한 공전형 전원 시스템)

  • 김주용;문상필;정장근;이현우;서기영
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.397-401
    • /
    • 2003
  • A resonant type voltage source and power device and a control method using Pulse Density Modulation(PDM) power control and Pulse Width Modulation(PWM) voltage control for plasma sterilization are described. For the stability of discharge in the generating tube, it is desirable that the peak apply voltage is constant The PDM power control is employed for sustaining the voltage constant at any generating tube input power. Moreover, to avoid the influence of input AC voltage fluctuation etc., PWM voltage control with generating tube peak voltage feedback is used. Both functions were confirmed by the experiment with 6.5[㎑], 1.8[㎾] inverter and generating tube. The effect of input synchronous PDM method for input current stabilizing is confirmed also.

  • PDF

Radical Mist Generator Using a Water Plasma Jet and Its Sterilization Effect

  • Huh, Jin Young;Ma, Suk Hwal;Kim, Kangil;Choi, Eun Ha;Hong, Yong Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.175.1-175.1
    • /
    • 2016
  • In recent, tract infections such as atopic dermatitis, allergic rhinitis and a respiratory disease are increasing, giving rise to the atmospheric pollution, inflow of micro-size dust and side effect of humidifier disinfectant. In this context, the environment-friendly technology is required to eliminate airborne pathogens. We propose solution of the previous problems, making use of Radical Mist Generator (RMG). Existing technologies of air purification using a gas discharge produce harmful substances such as ozone, NOx, etc. However, the RMG uses a pure water as a plasma forming material. The RMG sprays the water mist, which contains reactive radicals to sterilize microorganisms. RMG is comprised of a power supply, plasma electrodes and a nozzle. In order to analyze the electrical characteristic and concentrations of reactive radicals, we employ an oscilloscope and a titration method. To test the sterilization effect of RMG, we used E.coli. We confirmed that E.coli was killed over 90%. Eventually, we expect that RMG can be promising tool for a purified system.

  • PDF

A Study on Sterilization Characteristics of Elliptical Reactor by Using Xenon Flashlamp and Photocatalyst (Xenon flashlamp와 광촉매를 이용한 타원형 반응기의 살균 특성에 관한 연구)

  • Lee, Dong-Gil;Hong, Ji-Tae;Choi, Kyoung-Hwa;Cha, Jae-Ho;Kim, Hong-Ju;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.559-565
    • /
    • 2009
  • In this paper, we invented a new and unique technique for the sterilization of Escherichia coli(E. coli) in polluted water. We applied a rich ultra-violet(UV) light from pulsed xenon flashlamp and photocatalyst(TiO2) to sterilize E. coli in polluted water. This method based on the use of UV light and photocatalyst is eco-friendly and does not cause secondary pollution. The proposed elliptical reactor is able to concentrate on quartz sleeve coated TiO2 or general quartz sleeve. The primary objective of our research was to determine the important parameters such as pulse repetition rate and input voltage and to know on the sterilizing efficiency of quartz sleeve coated TiO2 and general quartz sleeve. We obtained to achieve 99.999% sterilization in as little as 6 pulses at 800V in case of quartz sleeve coated Ti02, and 10 pulses at 800V in case of general quartz sleeve for 5 minutes. Although transmitted light of quartz sleeve coated TiO2 is deceased, the sterilizing efficiency is increased by 40% than general quartz sleeve. The reason of high sterilizing efficiency is that generated hydroxyl radical(OH) by photocatalyst and is able to concentrate light at a focus by using elliptical reactor.

Radurization and Radicidation of Spices (향신료(香辛料)의 방사선조사(放射線照射) 살균(殺菌))

  • Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.311-318
    • /
    • 1985
  • This review was intended to develop the sterilization method of spices by gamma irradiation and the results are summarized as follows. Microbial load of spices was different according to the kind of spices and the number was ranged from $10^{2}$-$10^{5}/g$ to $10^{7}$-$10^{8}/g$, gamma irradiation up to 4-10 kGy could decreased or sterilized to the microorganism of spices. In physicochemical properties of spices such as chemical components,essential oil and flavor, irradiated group with optimum dose was almost similar to the nonirradiated one, while fumigant treated group was remarkably deteriorated in the properties of spices compared with control, and free radicals produced by irradiation was disappeared during a few days storage. Irradiated spices should be an aptitude for good quality the storeability of processing food. Optimum dose irradiation below less than that proposed by FAO/IAEA/WHO Joint Committee and FDA was remarkably effect on the sterilization of spices and superior in wholesomeness and economic feasibiity compared with traditional methods. Irradiation might be an alternative to traditional sterilization methods of spices by fumigants such as ethylene oxide and ethylene dibromide because their treatments have been banned in U.S.A and other countries since 1982.

  • PDF

Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave

  • Park, Hyong Seok;Yang, Jungwoo;Choi, Hee Jung;Kim, Kyoung Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1209-1215
    • /
    • 2017
  • Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, $108^{\circ}C$ of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

The study on the Performance of air sterilization of multistoried apartment by the multizone modeling (멀티죤 시뮬레이션에 의한 공동주택의 미생물 오염원제거 성능평가에 관한 연구)

  • Choi, Sang-Gon;Park, Kyung-Su;Yoon, Young-Soo;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.319-324
    • /
    • 2006
  • The purpose of this study Is to evaluate the efficacy of multizone simulation that enables to grasp of details about microbial contaminant problem in an multistoried apartment. We used actual indoor test data to figure up microbial contaminant level as initial value for the multizone simulation and estimated the various effects of indoor occupant infected with germs and the performance of air sterilization by using multizone simulation in substitute for infeasible experimental approach. The results show that natural ventilation make ourselves generally useful for removing indoor microbial contaminants. The results also show that the performance of air sterilization reach the maximum in the case of using mechanical ventilation and UVGI air sterilizer. The conclusion is that this multizone simulation is useful tool for actual design method for Immune building systems.

  • PDF

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

Changes in the Quality Characteristics of Yuzu (Citrus Junos Sieb.) after Ozone Water Washing Treatment, Sterilization and Storage Period (오존수 세척 처리에 의한 유자의 품질 특성 변화 및 저장기간별 살균 효과)

  • Bo-Bae Lee;Min-Hwan Kim;Chang-Yong Yoon;Youn-sup Cho;Seung-Hee Nam
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.236-243
    • /
    • 2023
  • The purpose of this study was to investigate the effects of sterilization, storage period and washing yuzu, according to the washing method, during the storage period. The results showed that the fungus size increased as the storage period increased, and no mold occurred in the yuzu washed with ozone water until 20 days. After 30 days of storage, a mold of 124.1±13.9 mm2 was observed. The no-treatment sample had a fungus of 814.5±72.8 mm2 in size on day 0 and the fungus the largest fungus was 6,362±636.7 mm2 on day 30. In the case of water treatment, the fungus was 286.4±31.5~4,836.4±484.6 mm2 in size. The results of the study confirmed that washing yuzu with ozone water has a sterilizing effect.

Efficacy of Listeria Innocua Reduction on Enoki Mushrooms by Utilization of an Air Sterilization Device (공기 살균 장치 적용 팽이버섯 재배사의 Listeria Innocua 저감 효과)

  • Lee, Hyun-Dong;Yu, Byeong-Kee;Seo, Da-Som;Kim, Se-Ri;Lee, Chan-Jung;Kwak, Kang-Su
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.210-215
    • /
    • 2021
  • For sterilization of microorganisms of the Listeria genus contaminating enoki mushroom, pilot mushroom grower equipped with air sterilization devices were developed. Sterilization experiments were performed using physical and chemical treatments. Internal temperature and humidity were controlled, maintaining 6.62℃±0.30 in the upper shelves, 6.46℃±0.24 in the middle shelves, and 6.48℃±0.25 in the lower shelves. Humidities were 79.97%±4.42, 79.43%±4.06, and 79.94±4.30%, respectively, with a temperature setting of 6.5℃, and a relative humidity of 75%. A suitable enoki mushroom cultivation stage for air sterilizer application was during the growth stage, with temperature in the 6.5~8.5℃ range, and humidity of 70~80%. At these same internal conditions, the ozone concentration in the mushroom cultivator was found to be 160 ppb during ion-cluster generator operation. After physical sterilization, the Listeria innocua survival rate was 0.1 to 0.9% using ion cluster sterilization, and 9.3 to 10.6% using UV air sterilization. The Listeria innocua survival rates on different materials were 9.3~10.6% on the metal specimen, and 9.9~16.2% on the plastic wrapper. The survival rate was particularly high on the rough side of the plastic wrapper. Ion cluster air sterilization is a labor-saving and effective method for suppressing the occurrence of Listeria bacteria on mushroom growers walls and shelves. For the plastic wrapper, chemical sterilization is more effective than physical sterilization.