• Title/Summary/Keyword: stereo image

Search Result 1,065, Processing Time 0.025 seconds

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.

Development of a Satellite Image Preprocessing System for Obtaining 3-D Positional Information -Focused on KOMPSAT and SPOT Imagery- (3차원 위치정보를 취득하기 위한 위성영상처리 시스템 개발 - KOMPSAT 및 SPOT영상을 중심으로 -)

  • 유환희;김동규;진경혁;우해인
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.291-300
    • /
    • 2001
  • In this paper, we developed a Satellite Image Processing System for obtaining 3-D positional information which is composed of five process modules. As a procedure of them, the Data Process module is the procedure that reads and processes the header file to generate data files. and then calculates orbital parameters and sensor attitudes for obtaining of 3-D positional information with them. The 3D Process module is to calculate 3-D positional information and the Dialog Process module is to correct the time of image frame center using the single image or stereo images for implementing the 3D Process module. We expect to obtain 3-D positional information with the header file and minimum GCPs(1∼2 points) using this system efficiently and economically in comparison with existing commercial software packages.

  • PDF

Highly Dense 3D Surface Generation Using Multi-image Matching

  • Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.

Recent Technologies for the Acquisition and Processing of 3D Images Based on Deep Learning (딥러닝기반 입체 영상의 획득 및 처리 기술 동향)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.112-122
    • /
    • 2020
  • In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.

3D Image Processing System for an Robotic Milking System (로봇 착유기를 위한 3차원 위치정보획득 시스템)

  • Kim, W.;Kwon, D.J.;Seo, K.W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.165-170
    • /
    • 2002
  • This study was carried out to measure the 3D-distance of a cow model teat for an application possibility on Robotic Milking System(RMS). A teat recognition algorithm was made to find 3D-distance of the model by using Gonzalrez's theory. Some of the results are as follows. 1 . In the distance measurement experiment on the test board, as the measured length, and the length between the center of image surface and the measured image point became longer, their error values increased. 2. The model teat was installed and measured the error value at the random position. The error value of X and Y coordinates was less than 5㎜, and that of Z coordinates was less than 20㎜. The error value increased as the distance of camera's increased. 3. The equation for distance information acquirement was satisfied with obtaining accurate distance that was necessary for a milking robot to trace teats, A teat recognition algorithm was recognized well four model cow teats. It's processing time was about 1 second. It appeared that a teat recognition algorithm could be used to determine the 3D-distance of the cow teat to develop a RMS.

  • PDF

Visual Sensing of the Light Spot of a Laser Pointer for Robotic Applications

  • Park, Sung-Ho;Kim, Dong Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • In this paper, we present visual sensing techniques that can be used to teach a robot using a laser pointer. The light spot of an off-the-shelf laser pointer is detected and its movement is tracked on consecutive images of a camera. The three-dimensional position of the spot is calculated using stereo cameras. The light spot on the image is detected based on its color, brightness, and shape. The detection results in a binary image, and morphological processing steps are performed on the image to refine the detection. The movement of the laser spot is measured using two methods. The first is a simple method of specifying the region of interest (ROI) centered at the current location of the light spot and finding the spot within the ROI on the next image. It is assumed that the movement of the spot is not large on two consecutive images. The second method is using a Kalman filter, which has been widely employed in trajectory estimation problems. In our simulation study of various cases, Kalman filtering shows better results mostly. However, there is a problem of fitting the system model of the filter to the pattern of the spot movement.

Image Processing Technique of the 3D Animation on Smartphone (스마트폰 상에서의 3D 애니메이션 영상처리 기법)

  • Ryu, Chang-su;Hur, Chang-wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.183-185
    • /
    • 2013
  • As mobile devices have developed, flash animations suitable for the existing web have solved part of the weakness caused by the image quality deterioration and the transmission capacity, but it is difficult to express 3D stereo-scopic images. Also, for the real time-randering of visual expressions for animation and the device technique for smartphone to accord with commercial demands, it is required to develop the 3D image processing technique. This paper studied on the image processing method for 3D animation capable of 3D graphic rendering with view system of android and OpenGL M3G in an embedded system device and OpenGL ES 2.0 library.

  • PDF

Multi-Focusing Image Capture System for 3D Stereo Image (3차원 영상을 위한 다초점 방식 영상획득장치)

  • Ham, Woon-Chul;Kwon, Hyeok-Jae;Enkhbaatar, Tumenjargal
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.118-129
    • /
    • 2011
  • In this paper, we suggest a new camera capturing and synthesizing algorithm with the multi-captured left and right images for the better comfortable feeling of 3D depth and also propose 3D image capturing hardware system based on the this new algorithm. We also suggest the simple control algorithm for the calibration of camera capture system with zooming function based on a performance index measure which is used as feedback information for the stabilization of focusing control problem. We also comment on the theoretical mapping theory concerning projection under the assumption that human is sitting 50cm in front of and watching the 3D LCD screen for the captured image based on the modeling of pinhole Camera. We choose 9 segmentations and propose the method to find optimal alignment and focusing based on the measure of alignment and sharpness and propose the synthesizing fusion with the optimized 9 segmentation images for the best 3D depth feeling.

A Research on the Effect of Foreign Passengers' Satisfaction on Specialized Cabin Services on Long Haul Flight to Their Loyalty through Airline's Brand Asset (장거리노선 기내특화서비스에 대한 외국인 승객의 만족도가 항공사의 브랜드 자산을 매개로 하여 고객충성도에 미치는 영향에 대한 연구)

  • Kim, Kwang Il;Gwon, Eun Hyeong;Kim, Kee Woong;Park, Sung Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.65-77
    • /
    • 2013
  • A high brand reputation of a airline means the airline is preferred by passengers because of its unique services being even better than others. This is why airline's specialized services are important in that those services would create a new brand value and build up the airline's brand image, being enable to have competitive advantage over other airlines, to provide satisfied services, to have a mutual trust between passengers and the airline and to create customer's loyalty. A-Airline have been trying to give passengers a joy of flight by providing its customized and specialized cabin services out of airlnes' stereo-typed services.Therefore this paper will find out how their satisfaction of the cabin services have a positive impact on customer loyalty through brand image, brand reputation, brand identity and brand attraction. Those services would not only contribute to upgrade A-airline's corporate image but show the way to which the cabin service is heading also.

Strawberry Harvesting Robot for Bench-type Cultivation

  • Han, Kil-Su;Kim, Si-Chan;Lee, Young-Bum;Kim, Sang-Chul;Im, Dong-Hyuk;Choi, Hong-Ki;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • Purpose: An autonomous robot was developed for harvesting strawberries cultivated in bench-type systems. Methods: The harvest robot consisted of four main components: an autonomous vehicle, a manipulator with four degrees of freedom (DOF), an end effector with two DOFs, and a color computer vision system. Strawberry detection was performed based on 3D image and distance information obtained from a stereo CCD color camera and a laser device, respectively. Results: In this work, a Cartesian type manipulator system was designed, including an intermediate revolute axis and a double driven arm-based joint axis, so that it could generate collision-free motions during harvesting. A DC servomotor-driven end-effector, consisting of a gripper and a cutter, was designed for gripping and cutting the strawberry stem without damaging the strawberry itself. Real-time position tracking algorithms were developed to detect, recognize, trace, and approach strawberries under natural light conditions. Conclusion: The developed robot system could harvest a strawberry within 7 seconds without damage.