• Title/Summary/Keyword: stereo image

Search Result 1,065, Processing Time 0.025 seconds

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

Extraction of 3D Building Information by Modified Volumetric Shadow Analysis Using High Resolution Panchromatic and Multi-spectral Images (고해상도 전정색 영상과 다중분광 영상을 활용한 그림자 분석기반의 3차원 건물 정보 추출)

  • Lee, Taeyoon;Kim, Youn-Soo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.499-508
    • /
    • 2013
  • This article presents a new method for semi-automatic extraction of building information (height, shape, and footprint location) from monoscopic urban scenes. The proposed method is to expand Semi-automatic Volumetric Shadow Analysis (SVSA), which can handle occluded building footprints or shadows semi-automatically. SVSA can extract wrong building information from a single high resolution satellite image because SVSA is influenced by extracted shadow area, image noise and objects around a building. The proposed method can reduce the disadvantage of SVSA by using multi-spectral images. The proposed method applies SVSA to panchromatic and multi-spectral images. Results of SVSA are used as parameters of a cost function. A building height with maximum value of the cost function is determined as actual building height. For performance evaluation, building heights extracted by SVSA and the proposed method from Kompsat-2 images were compared with reference heights extracted from stereo IKONOS. The result of performance evaluation shows the proposed method is a more accurate and stable method than SVSA.

Precise Rectification of Misaligned Stereo Images for 3D Image Generation (입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정)

  • Kim, Jae-In;Kim, Tae-Jung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2012
  • The stagnant growth in 3D market due to 3D movie contents shortage is encouraging development of techniques for production cost reduction. Elimination of vertical disparity generated during image acquisition requires heaviest time and effort in the whole stereoscopic film-making process. This matter is directly related to competitiveness in the market and is being dealt with as a very important task. The removal of vertical disparity, i.e. image rectification has been treated for a long time in the photogrammetry field. While computer vision methods are focused on fast processing and automation, photogrammetry methods on accuracy and precision. However, photogrammetric approaches have not been tried for the 3D film-making. In this paper, proposed is a photogrammetry-based rectification algorithm that enable to eliminate the vertical disparity precisely by reconstruction of geometric relationship at the time of shooting. Evaluation of proposed algorithm was carried out by comparing the performance with two existing computer vision algorithms. The epipolar constraint satisfaction, epipolar line accuracy and vertical disparity of result images were tested. As a result, the proposed algorithm showed excellent performance than the other algorithms in term of accuracy and precision, and also revealed robustness about position error of tie-points.

The study of stereoscopic editing process with applying depth information (깊이정보를 활용한 입체 편집 프로세스 연구)

  • Baek, Kwang-Ho;Kim, Min-Seo;Han, Myung-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.225-233
    • /
    • 2012
  • The 3D stereoscopic image contents have been emerging as the blue chip of the contents market of the next generation since the . However, all the 3D contents created commercially in the country have failed to enter box office. It is because the quality of Korean 3D contents is much lower than that of overseas contents and also current 3D post production process is based on 2D. Considering all these facts, the 3D editing process has connection with the quality of contents. The current 3D editing processes of the production case of are using the way that edits with the system on basis of 2D, followed by checking with 3D display system and modifying, if there are any problems. In order to improve those conditions, I suggest that the 3D editing process contain more objectivity by visualizing the depth data applied in some composition work such as Disparity map, Depth map, and the current 3D editing process. The proposed process has been used in the music drama , comparing with those of the film . The 3D values could be checked among cuts which have been changed a lot since those of , while the 3D value of drew an equal result in general. Since the current process is based on an artist's subjective sense of 3D, it could be changed according to the condition and state of the artist. Furthermore, it is impossible for us to predict the positive range, so it is apprehended that the cubic effect of space might be perverted by showing each different 3D value according to cuts in the same space or a limited space. On the other hand, the objective 3D editing by applying the visualization of depth data can adjust itself to the cubic effect of the same space and the whole content equally, which will enrich the 3D contents. It will even be able to solve some problems such as distortion of cubic effect and visual fatigue, etc.

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Estimating Accuracy of 3-D Models of SPOT Imagery Based on Changes of Number of GCPs (SPOT영상을 사용한 3차원 모델링시 지상기준점수에 따른 정확도 평가)

  • 김감래;안병구;김명배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2003
  • There is various kinds cause that influence to created DEM and orthoimage using stereo satellite images. Specialty, research about effect that GCP number gives to accuracy of DEM, orthoimage and modeling may have to be gone ahead. Therefore, this research increases GCP number by 5 to 30 and created each modeling, DEM and orthoimage using SPOT panchromatic images that resolution is 10m by digital image processing method. Accuracy assessment did by orthoimage using 20 check point. As a result, GCP number between 10∼30 modeling RMSE is 1 pixel low appear. Horizontal·vertical error that use orthoimage looked tendency that decrease GCP number increases, and confirmed by the most economical in GCP number 10∼15. Also, analyze correlation of GCP number and orthoimage position accuracy and presented improvement plan and research task hereafter.

Accuracy Analysis of Ortho Imagery with Different Topographic Characteristic (지역적 특성에 따른 정사영상의 정확도 분석)

  • Jo, Hyun-Wook;Park, Joon-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • Mapping applications using satellite imagery have been possible to quantitative analysis since SPOT satellite with stereo image was launched. Especially, high resolution satellite imagery was efficiently used in the field of digital mapping for the areas which are difficult to produce large-scale maps by aerial photogrammetry or carry out ground control point surveying due to unaccessibility. This study extracted the geospatial information out of consideration for topographic characteristic from ortho imagery of the National Geospatial-intelligence Agency(NGA) in the United States of America and analyzed the accuracy of plane coordinate for ortho imagery. For this purpose, the accuracy according to topographic character by comparison between both extraction data from ortho imagery and the digital topographic maps of 1:5000 scale which were produced by Korea National Geographic Information Institute(NGI) was evaluated. It is expected that the results of this study will be fully used as basic information for ground control point acquisition or digital mapping in unaccessible area.

  • PDF

Spatial Distribution of Evergreen Coniferous Dead Trees in Seoraksan National Park - In the Case of Northwestern Ridge - (설악산국립공원 상록침엽수 고사목 공간분포 특성 - 서북능선 일원을 대상으로 -)

  • Kim, Jin-Won;Park, Hong-Chul;Park, Eun-Ha;Lee, Na-Yeon;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.59-71
    • /
    • 2020
  • Using high-resolution stereoscopic aerial images (in 2008, 2012 and 2016), we conducted to analyze the spatial characteristics affecting evergreen coniferous die-off in the northwestern ridge (major distribution area such as Abies nephrolepis), Seoraksan National Park. The detected number of dead trees at evergreen coniferous forest (5.24㎢) was 1,223 in 2008, was 2,585 in 2012 and was 3,239 in 2016. The number of cumulated dead trees was 7,047 in 2016. In recent years, the number of dead trees increased relatively in the northwest ridge, Seoraksan National Park. Among the analysed spatial factor (altitude, aspect, slope, solar radiation and topographic wetness index), the number of dead trees was increased in the conditions with high altitude, steep slope and dry soil moisture. A spatial distribution of dead tree was divided into 2 groups largely (high altitude with high solar radiation, low altitude with steep slope). In conclusion, the dead trees of evergreen coniferous were concentrated at spatial distribution characteristics causing dryness in the northwestern ridge, Seoraksan National Park.

Developing Stereo-vision based Drone for 3D Model Reconstruction of Collapsed Structures in Disaster Sites (재난지역의 붕괴지형 3차원 형상 모델링을 위한 스테레오 비전 카메라 기반 드론 개발)

  • Kim, Changyoon;Lee, Woosik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.33-38
    • /
    • 2016
  • Understanding of current features of collapsed buildings, terrain, and other infrastructures is a critical issue for disaster site managers. On the other hand, a comprehensive site investigation of current location of survivors buried under the remains of a building is a difficult task for disaster managers due to the difficulties in acquiring the various information on the disaster sites. To overcome these circumstances, such as large disaster sites and limited capability of rescue workers, this study makes use of a drone (unmanned aerial vehicle) to effectively obtain current image data from large disaster areas. The framework of 3D model reconstruction of disaster sites using aerial imagery acquired by drones was also presented. The proposed methodology is expected to assist fire fighters and workers on disaster sites in making a rapid and accurate identification of the survivors under collapsed buildings.

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF