• 제목/요약/키워드: step shape

검색결과 945건 처리시간 0.029초

반용융 단조에서 가압유지 시간에 의한 미세조직의 특성 (Microstructural Characteristics by Compression Holding Time in Semi-Solid Forging)

  • 최재찬;박형진;이병목
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.174-182
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net-shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression -holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect microstructural characteristics and shape of products is important to make decision, where it is necessary to find overall heat transfer coefficient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of obtaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression holding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression holding time on microstructural characteristics of products is finally investigated by experiment.

  • PDF

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • 제1권3호
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

실험계획법에 의한 승강기용 구동부 주조품의 다이캐스팅 탕구방안 최적화 (Optimal Gating System Design of Escalator Step Die Casting Part by Using Taguchi Method)

  • 정원제;윤형표;홍순국;박익민
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.97-103
    • /
    • 2000
  • In this study, a design of experiment, Taguchi method, was applied to optimize gating system design of escalator step die casting parts. Six shape factors which affect filling sequence of melt are adopted and divided into two levels respectively. Initial feeding differences of melt which were calculated by using S/N(signal-to-noise) ratio in each condition were demonstrated with the simulation of Flow-3D software program. Variations of S/N ratio according to shape factors were obtained and the optimal condition of gating system could also be obtained. It could be found that width of gate, contact angle of gate, thickness of runner are more effective factors on the filling sequence of melt than the others in this case of escalator step die casting parts. It showed that the economical gating system and sound filling sequence of melt were obtained by using Taguchi method.

  • PDF

A Robust Algorithm for Tracking Non-rigid Objects

  • Kim, Jong-Ryul;Na, Hyun-Tae;Moon, Young-Shik
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.141-144
    • /
    • 2002
  • In this paper, we propose a new object tracking algorithm using deformed template and Level-Set theory, which is robust against background variation, object flexibility and occlusion. The proposed tracking algorithm consists of two steps. The first step is an estimation of object shape and location, on the assumption that the transformation of object can be approximately modeled by the affine transform. The second step is a refinement of the object shape to fit into the real object accurately, by using the potential energy map and the modified Level Set speed function. Experimental results show that the proposed algorithm can track non-rigid objects with large variation in the backgrounds.

  • PDF

항공기 포드 냉각용 공기흡입관 내부 유동해석 (THE INTERNAL FLOW ANALYSIS OF AIR INTAKE FOR THE COOLING OF AIRCRAFT POD)

  • 김선태;정용인;조승호;문우용;강인모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.81-85
    • /
    • 2009
  • In this paper, the aerodynamic shape of air intake was investigated for the efficient cooling of electronic equipments in aircraft pod. As a first step, ESDU method was applied for the basic shape design of air intake considering the operational environments. The second step was to confirm the performance on design point, so the internal flow field of air intake was analyzed using a commercial Navier-Stokes code(FLUENT). And also the aerodynamic characteristics of internal flow at off-design condition was investigated with the variations of airflow rate. The results show that the air intake meets the requirement of target performance under the mission environments.

  • PDF

공기막 구조물의 형상해석 (Shape Finding Analysis of Pneumatic Structure)

  • 권택진;서삼열;이장복
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.57-64
    • /
    • 1994
  • The purpose of this paper is to find minimum surface shape of pneumatic structure using the finite element method. The pneumatic membrane structure is a kind of large deformation problem and very flexible composite material, which mean geomatric nonlinearity. It is not to resist for compression and resultant moment. As the displacement due to internal pressure is getting bigger, it should be considered the direction of forces. It becomes non-linear problem with the non-conservative force. The follower-force depends on the deformation and the direction of force is normal to each element. The solution process is obtained the new stiffness matrix (load correction matrix) depending on deformation through each iterated step. However, the stiffness matrix have not the symmetry and influence on the time of covergence. So in this paper Newton-Rhapson method for solving non-linear problem and for using symmetic matrix, the load direction is changed in each iterated step using the transformation matrix.

  • PDF

FEM을 이용한 외부고정구 영향에 의한 골-재형성에 대한 해석 (Analysis of bone-remodeling by the influence of external fixator with FEM)

  • 김영은;이원식
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.436-444
    • /
    • 1991
  • A computational method has been developed to analyze the bone-remodeling induced by external fixator. The method was based on the Finite Element Method (FEM) in combination with numerical formulation of adaptive bone-remodeling theories. As a feed-back control variable, compressive strain and effective stress were used to determine the surface remodeling and internal (density) remodeling respectively. Surface remodeling and internal remodeling were combined at each time step to predict the rel situation. A noticeable shape and density change were detected at the region between two pins and density change was decreased with time increment. At final time step, the shape and density distribution were converged closely to its original intact bone model. Similar change was detected in stress distribution. The altered stress distribution due to the pin and external fixator converged to the intact stress distribution with time.

Order Tracking 을 이용한 Cogged belt 소음특성의 측정 및 구조변경 설계 (Measuring of Noise Character on Cogged Belt Using Order Tracking and Design of Belt Shape)

  • 구정태;강종진;정의봉;안세진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1049-1053
    • /
    • 2007
  • Cogged belts get unpleasant noise when the speed is up and down. This paper investigates optimum condition for reducing a belt noise that is caused by a belt shape and properties of the material. Order tracking is used analyze belt noise. First step, the pitch length exerts an important influence on the order noise. Second step, material of belt is also important for reducing noise level. The experimental results showed the modified form and material of belts to reduce the noise.

  • PDF

경사진 전극링을 이용한 고균일도의 미세 솔더범프 형성 (Formation of Fine Pitch Solder Bump with High Uniformity by the Tilted Electrode Ring)

  • 주철원;이경호;민병규;김성일;이종민;강영일
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.798-802
    • /
    • 2005
  • The plating shape in the opening of photoresist becomes gradated shape in the fountain plating system, because bubbles from the wafer surface are difficult to escape from the deep openings, vias. In this paper, the bubble flow from the wafer surface during plating process was studied and we designed the tilted electrode ring to get uniform bump height on all over the wafer and evaluated the film uniformity by SEM and $\alpha-step$. In a-step measurement, film uniformities in the fountain plating system and the tilted electrode ring contact system were $\pm16.6\%,\;\pm4\%$ respectively.

레이저 용접 차체의 유한 요소 모델링과 성형해석 (A Finite Element Modeling and Analyses of Laser Tailor-Welded Automotive Body)

  • 김헌영;최광용;김관회;조원석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.31-36
    • /
    • 1997
  • Various methods of finite element modeling for welded part are examined and the stamping simulation of automotive body is presented by using the explicit finite element code PAM-STAMPTM. The process of stamping simulation is suggested step by step, and then the gravity, binder wrap, forming, trimming and springback of front door inner are analyzed. It shows good agreements with real product in the aspects of deformed shape and failure area. The door inner with laser-tailor welded blank is simulated, in which deformed shape, movement of welde line and formability are predicted.

  • PDF