• Title/Summary/Keyword: step coverage

Search Result 185, Processing Time 0.026 seconds

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • Park, Jae-Hyeong;Han, Dong-Seok;Mun, Dae-Yong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

Analysis of Korea Science Citation Database's effect on JCR (한국과학기술인용 DB를 반영한 JCR 분석연구)

  • Lee, Jong-Wook;Yang, Ki-Duk;Kim, Byung-Kyu;You, Beom-Jong
    • Journal of Information Management
    • /
    • v.43 no.3
    • /
    • pp.23-41
    • /
    • 2012
  • Citation analysis studies have reported many problems associated with data coverage problems common to popular citation databases such as Web of Science(WoS). In addition, the studies that analyzed citation patterns of Korean publications found that up to 75% of references in Korean publications were to international publications. As a first step in investigating the international coverage of WoS database, the study investigated the effect of adding citation data from Korea Science Citation Database(KSCD) to the impact factors and journal rankings of the journals listed in Journal Citation Reports. Specifically, the study mined the reference data from top 5 Korean Library and Information Science(KLIS) journals to recompute the impact factors reported in JCR 2009. Since the resulting journal rankings did not significantly differ from JCR 2009 rankings except for minor ranking changes, we analyzed additional citation data from 45 computer science and electrical engineering journals. Although the overall ranking difference was not statistically significant, one of the ranking partitions showed significant change. Such study findings despite its limited data sample suggest the potential impact of non-Western citation databases such as KSCD to bibliometric indicators provided by popular citation databases like WoS.

Study on the Formation of SiO2:F films Using Liquid Phase Deposition (액상증착법에 의한 산화막 형성에 관한 연구)

  • Lee, S.K.;Kim, C.J.;Chanthamaly, P.;Haneji, N.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1559-1562
    • /
    • 1999
  • We formed $SiO_2:F$ films by low-temperature process called Liquid Phase Deposition(LPD) and investigated its electrical and physical properties. Because of the use of room-temperature and no special vacuum apparatus for forming $SiO_2:F$ films, this technique can have some advantages related with the application to dielectric interlayer for multilevel structure in ULSI devices. The growth rate 100nm/hr was obtained at the growth solution of 2.5mol/l. The P-etch rate showed a similar or better tendency compared with $SiO_2$ films formed by CVD, Sputter, E-beam evaporator etc.. The fourier transform infrared (FTIR) spectra revealed that the contained fluorine atoms exist uniform throughout the formed $SiO_2$ films. The Scanning Electron Microscope images showed that LPD-$SiO_2$ films could be stably grown on silicon substrates and the good step-coverage could also be obtained, which indicates that the LPD-$SiO_2$ films have some possibility of the application to planarization and interlayer dielectric films which are vitally necessary to achieve the multilevel interconnection in ULSI. The I-V characteristics has some distinct differences according to the concentration of growth solution.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.

Development of Isolation and Cultivation Method for Outer Root Sheath Cells from Human Hair Follicle and Construction of Bioartificial Skin

  • Sin, Yeon-Ho;Seo, Yeong-Gwon;Lee, Du-Hun;Yu, Bo-Yeong;Song, Gye-Yong;Seo, Seong-Jun;Hwang, Seong-Ju;Kim, Yeong-Jin;Yang, Eun-Gyeong;Park, Jang-Seo;Jang, Lee-Seop;Park, Jeong-Geuk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • It is difficult to obtain sufficient healthy skin for coverage of a wide area of skin wound. In the skin, an additional population of living epithelial cells is located in the outer root sheath (ORS) of hair $follicles.^{1),2)}$ ORS cells should be a good source of epithelium because they are easily obtainable and patients do not have to suffer from scar formation at donor sites. We modified ordinary primary culture technique for the purpose of solving such problem that epithelial cells have a low propagation and easy aging during culture periods. First of all, we improved primary cultivation methods. In the ordinary primary culture, average yield of human ORS cells was $2\;{\times}\;10^3$ cells/follicle by direct incubation with trypsin (0.1%)/EDTA (0.02%) solution for 15 min at $37^{\circ}C$ but we could obtain about $6.5\;{\times}\;10^3$ cells/follicle by two step enzyme digestion method with dispase (1.2 U/ml) and trypsin (0.1%)/EDTA (0.02%) solution. So we could achieve three times higher primary cultured ORS cell yield. Secondly, we could obtain total $2\;{\times}\;10^7$ cells in serum free medium and even more total $6\;{\times}\;10^7$ cells in modified E-medium with mitomycin C-treated feeder cells during 17 days. Using the cultured ORS cells, and we could make bioartificial skin equivalent in vitro and concluded that ORS cells were progenitor cells for skin epithelial cell.

  • PDF

A Study on the Current State of Korean Military Winter Uniform Tops (한국 군용 방한복 상의에 대한 실태조사)

  • Jeong, Mi-Ae;Nam, Yun-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.5
    • /
    • pp.66-81
    • /
    • 2016
  • This study is designed to understand the problems of existing Korean male soldiers' winter uniform tops by researching its current state, and contribute to developing uniforms with improved size and motion appropriateness. Military bases were visited to research satisfaction of size and motion appropriateness of the current winter uniform tops. 193 soldiers were surveyed and interviewed, and the shape and fit of the standard sizes of the inner and outer layers of the current winter uniform were analyzed. Findings of this study are as follows. 1) Compared to the new combat uniforms that soldiers were wearing in their appropriate size (of the 44 sizes), there were many cases where the soldiers were not wearing winter uniform inner (of the 8 sizes) or outer (of the 18 sizes) layers in the correct size for their body. 2) A total of 37 combat uniform sizes appropriate for the body shapes were expected to be newly applied, and inside and outside layers of winter tops would be presented as sets of 14 different sizes in step with the new combat uniform sizes, instead of the existing 8 inside layer sizes and 18 outside layer sizes. 3) The inner and outer layer of the existing winter uniform tops had several problems with the shape and fit. First, the inner layer was shorter than the combat uniform. Its shoulder width was wide, but the sleeve length was short creating lack of coverage, and the angle connecting the sleeve and bodice was very small creating a high sleeve cap curve and narrow sleeve width that make motions difficult and cause discomfort. As for the outer layer, the hem moved up when soldiers bent over or adjusted the waist string so the top could not sufficiently cover, the shoulder width was wide and the sleeve length was short, requiring improvements.

Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience

  • Choi, Kyu Hye;Kim, Jina;Lee, Sea-Won;Kang, Young-nam;Jang, HongSeok
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Purpose: The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. Materials and Methods: We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Results: Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart $V_{30}$ (p = 0.039), $V_{40}$ (p = 0.040), and $V_{50}$ (p = 0.032). Conclusion: Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung $V_{10}$, $V_{20}$, and $V_{30}$ than in 3D-CRT, but could not be proven superior in lung $V_5$. In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.430-437
    • /
    • 2016
  • Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

Surface Morphology and Hole Filling Characteristics of CVD Copper (CVD법에 의해 성막된 구리의 표면 형상 및 충진 특성에 관한 연구)

  • Kim, Duk-Soo;Sunwoo, Changshin;Park, Don-Hee;Kim, Jin-Hyuk;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.98-102
    • /
    • 2005
  • This article describes a study of chemical vapor deposition (CVD) of copper thin films on TiN substrates using (HFAC)Cu(DMB) as a precursor. The surface morphology and conformality of the Cu films as functions of substrate temperature and the presence or absence of iodine have been investigated. The surface roughness was increased significantly along with decrement of the step coverage by increasing the deposition temperature. The highest conformal films with the lowest surface roughness were obtained using the process of copper CVD, where iodine vapor were discretely introduced into the reactor during the growth of copper.