• Title/Summary/Keyword: stem-like cells

Search Result 285, Processing Time 0.021 seconds

Expression of Glypican-3 in Mouse Embryo Stem Cells and its Derived Hepatic Lineage Cells Treated with Diethylnitrosamine in vitro

  • Kim, Young Hee;Kang, Jin Seok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6341-6345
    • /
    • 2013
  • To clarify the role of stem cells in hepatocarcinogenesis, glypican-3 (GPC-3) and E-cadherin expression was investigated in embryonic cell lineages. Mouse embryonic stem cells (ESCs), hepatic progenitor cells (HPCs) and hepatocyte like cells (HCs), representing 0, 22 and 40 days of differentiation, respectively, were treated in vitro with diethylnitrosamine (DEN) at four doses (0, 1, 5 and 15 mM; G1, G2, G3 and G4, respectively) for 24 h and GPC-3 and E-cadherin expression was examined by relative quantitative real-time PCR and immunocytochemistry. GPC-3 mRNA expression was significantly different for G4 at day 0 (p<0.001) and for G4 at day 22 (p<0.01) compared with the control (G1). E-cadherin mRNA expression was significantly different for G3 and G4 at day 0 (p<0.05 and p<0.001, respectively), for G2 and G4 (p<0.05 and p<0.001, respectively) at day 22 and for G2 and G4 (p<0.01 and p<0.001, respectively) at day 40 compared with G1. Immunofluorescence staining for GPC-3 showed a membranous and/or granular expression in cytoplasm of ESCs and HPCs and granular and/or diffuse expression in cytoplasm of HCs, which were also stained by E-cadherin. DEN treatment increased GPC-3 expression in ESCs, HPCs and HCs, with increase of E-cadherin expression. Taken together, the expression of GPC-3 was altered by DEN treatment. However, its expression pattern was different at the stage of embryo stem cells and its derived hepatic lineage cells. This suggests that GPC-3 expression may be modulated in the progeny of stem cells during their differentiation toward hepatocytes, associated with E-cadherin expression.

Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice

  • Seong, Kyung-Joo;Kim, Hyeong-Jun;Cai, Bangrong;Kook, Min-Suk;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

Comparison of Three Different Culture Systems for Establishment and Long-Term Culture of Embryonic Stem-like Cells from In Vitro-Produced Bovine Embryos

  • Kim, Daehwan;Park, Sangkyu;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.189-192
    • /
    • 2012
  • Although embryonic stem cells (ESCs) or ES-like cells are reported from many mammalian species other than the mouse, the culture system for murine ESCs may not be suitable to the other species. Previously many other research groups have modified either human or mouse ESC culture systems for bovine ESC culture. In this study, we compared three different culture mediums consisting of DMEM, ${\alpha}$-MEM or KnockOut$^{TM}$-DMEM (KO), which are modified from human or mouse ESC culture system, for the generation of bovine ESCs. In this study, some pre-requisite events which are important for establishment and long-term propagation of ESCs such as inner cell mass (ICM) attachment on feeder cells, primary colony formation and sustainability after passaging. Once the ICM clumps attached on feeder cells, this was designated as passage 0. In regards to the rate of ICM attachment, ${\alpha}$-MEM was superior to the other systems. For primary colony formation, there was no difference between DMEM and ${\alpha}$-MEM whereas KO showed lower formation rate than the other groups. For passaging, the colonies were split into 2~4 pieces and passed every 5~6 days. From passage 1 to passage 3, DMEM system seemed to be appropriate for maintaining putative bovine ESCs. On the other hand, ${\alpha}$-MEM tended to be more suitable after passage 6. Although ${\alpha}$-MEM support to maintain a ES-like cell progenies to passage 15, all three culture systems which are modified from human or mouse ESC culture media failed to retain the propagation and long-term culture of putative bovine ESCs. Our findings imply that more optimized alternative culture system is required for establishing bovine ESC lines.

Establishment of Human Embryonic Stem Cells using Mouse Embryonic Fibroblasts and Human Fetal Fibroblasts as Feeder Cells (인간태아 섬유아세포와 생쥐배아 섬유아세포를 기저세포로 활용한 인간 배아줄기세포의 확립)

  • Cho, Hye Won;Ko, Kyoung Rae;Kim, Mi Kyoung;Lee, Jae Ik;Sin, Su Il;Lee, Dong Hyung;Kim, Ki Hyung;Lee, Kyu Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.133-147
    • /
    • 2005
  • Objectives: This study was carried out to establish human embryonic stem cells derived from frozen-thawed embryos using mouse embryonic fibroblasts (mEFs), human fetal skin and muscle fibroblasts as feeder cells, and to identify the characteristic of embryonic stem cells. Methods: When primary mEFs, human fetal skin and muscle fibroblasts were prepared, passaging on 4 days from replating could have effective trypsinization and clear feeder layers. Eight of 23 frozenthawed 4~8 cell stage embryos donated from consenting couples developed to blastocysts. Inner cell mass (ICM) was isolated by immunosurgery. ICM was co-cultured on mEFs, human fetal skin or muscle fibroblasts. The ICM colonies grown on mEFs, human fetal skin or muscle fibroblasts were tested the expression of stage specific embryonic antigen-3, -4 (SSEA-3, -4), octamer binding transcription factor-4 mRNA (Oct-4) and alkaline phosphatase surface marker. Results: We obtained 1 ICM colony from 2 ICM co-cultured on mEFs as feeder cells and did not obtain any ICM colony from 6 ICM clumps co-cultured on human fetal skin or muscle fibroblasts. The colony formed on mEFs could be passaged 30 times every 5 days with sustaining undifferentiated colony appearance. When the colonies cultured on mEFs were grown on human fetal skin or muscle fibroblasts, the colonies could be passaged 15 times every 9 days with sustaining undifferentiated colony appearance. The colonies grown on mEFs and human fetal fibroblasts expressed SSEA-4 and alkaline phosphatase surface markers and positive for the expression of Oct-4 by reverse transcription-polymerase chain reaction (RT-PCR). The produced embryoid body differentiated spontaneously to neural progenitorlike cells, neuron-like cells and beating cardiomyocyte-like cells, and frozen-thawed embryonic stem cells displayed normal 46,XX karyotype. Conclusions: The human embryonic stem cells can be established by using mEFs and human fetal fibroblasts produced in laboratory as feeder cells.

Formation of Functional Cardiomyocytes Derived from Mouse Embryonic Stem Cells

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.76-76
    • /
    • 2003
  • Pluripotent embryonic stem cells can differentiate into beating cardiomyocytes with proper culture conditions and stimulants via embryo-like aggregates. We describe here the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. mES03 cells growing in colonies were dissociated and allowed to re-aggregated in suspension [embryoid body (EB) formation〕. To induce cardiomyocytic differentiation, cells were exposed to 0.75% dimethyl sulfoxide (DMSO) during EB formation for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EB was plated onto gelatin-coated dishes for differentiation. Spontaneously contracting colonies which appeared in approximately 4~5 days upon differentiation were mechanically dissected, enzymatically dispersed, plated onto coverslips, and then incubated for another 48~72 hrs. By RT-PCR, robust expression of cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta$($\beta$-MHC), cardiac transcription factor GATA4, and skeletal muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaC $h_{sm}$ ) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaCh) were reveled at a low level. In contrast, expression of myosin light chain (MLC-2V) and atrial natriuretic factor (ANF) were not detected during EB formation for 8 days. However, a strong expression of the atrial-specific ANF gene was expressed from day 8 onward, which were remained constant in EB. (cardiac specialization and terminal differentiation stage). Electrophysiological examination of spontaneously contracting cells showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes via 4+/4- protocol displayed biochemical and electrophysiological properties of subpopulation of cardiomyocytes.

  • PDF

Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells

  • Dissanayake, DMAB;Patel, H;Wijesinghe, PS
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • Objective: Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods: Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at $36^{\circ}C$ for 3 more weeks. Results: The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion: Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.

Differentiation of CD31-Positive Vascular Endothelial Cells from Organoid Culture of Dental Pulp Stem Cells

  • Seo, Eun Jin;Park, Jae Kyung;Jeong, Hoim;Kang, Jung Sook;Kim, Hyung-Ryong;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Characterization of Primary Epithelial Cells Derived from Human Salivary Gland Contributing to in vivo Formation of Acini-like Structures

  • Nam, Hyun;Kim, Ji-Hye;Hwang, Ji-Yoon;Kim, Gee-Hye;Kim, Jae-Won;Jang, Mi;Lee, Jong-Ho;Park, Kyungpyo;Lee, Gene
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.515-522
    • /
    • 2018
  • Patients with head and neck cancer are treated with therapeutic irradiation, which can result in irreversible salivary gland dysfunction. Because there is no complete cure for such patients, stem cell therapy is an emerging alternative for functional restoration of salivary glands. In this study, we investigated in vitro characteristics of primarily isolated epithelial cells from human salivary gland (Epi-SGs) and in vivo formation of acini-like structures by Epi-SGs. Primarily isolated Epi-SGs showed typical epithelial cell-like morphology and expressed E-cadherin but not N-cadherin. Epi-SGs expressed epithelial stem cell (EpiSC) and embryonic stem cell (ESC) markers. During long-term culture, the expression of EpiSC and ESC markers was highly detected and maintained within the core population with small size and low cytoplasmic complexity. The core population expressed cytokeratin 7 and cytokeratin 14, known as duct markers indicating that Epi-SGs might be originated from the duct. When Epi-SGs were transplanted in vivo with Matrigel, acini-like structures were readily formed at 4 days after transplantation and they were maintained at 7 days after transplantation. Taken together, our data suggested that Epi-SGs might contain stem cells which were positive for EpiSC and ESC markers, and Epi-SGs might contribute to the regeneration of acini-like structures in vivo. We expect that Epi-SGs will be useful source for the functional restoration of damaged salivary gland.