Browse > Article
http://dx.doi.org/10.11620/IJOB.2018.43.2.077

Differentiation of CD31-Positive Vascular Endothelial Cells from Organoid Culture of Dental Pulp Stem Cells  

Seo, Eun Jin (Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry)
Park, Jae Kyung (Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry)
Jeong, Hoim (Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry)
Kang, Jung Sook (Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry)
Kim, Hyung-Ryong (DGIST)
Jang, Il Ho (Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry)
Publication Information
International Journal of Oral Biology / v.43, no.2, 2018 , pp. 77-82 More about this Journal
Abstract
The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.
Keywords
dental pulp stem cell; organoid culture; endothelial cell; CD31;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125. doi: 10.1126/science.1247125   DOI
2 Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, Nakajima K, Hirayama M, Tachikawa T, Tsuji T. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2498. doi: 10.1038/ncomms3498   DOI
3 Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans BN, Vries RG, Clevers H, de Haan G, van Os R, Coppes RP. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62. doi: 10.1016/j.stemcr.2015.11.009   DOI
4 Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc. 2010;5:628-35. doi: 10.1038/nprot.2010.6   DOI
5 Clevers H, Watt FM. Defining Adult Stem Cells by Function, Not by Phenotype. Annu Rev Biochem. 2018. doi:10.1146/annurev-biochem-062917-012341
6 Luo L, He Y, Wang X, Key B, Lee BH, Li H, Ye Q. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int. 2018;2018:1731289. doi: 10.1155/2018/1731289
7 Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262-5. doi:10.1038/nature07935   DOI
8 Rossant J, Howard L. Signaling pathways in vascular development. Annu Rev Cell Dev Biol. 2002;18:541-73. doi:10.1146/annurev.cellbio.18.012502.105825   DOI
9 Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143:2273-80. doi: 10.1242/dev.134189   DOI
10 Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A,Liu S. Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33:627-38. doi: 10.1002/stem.1909   DOI
11 Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14:160-73. doi: 10.1016/j.stem.2013.12.013   DOI
12 Neves VC, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep. 2017;7:39654. doi: 10.1038/srep39654   DOI
13 Babb R, Chandrasekaran D, Carvalho Moreno Neves V,Sharpe PT. Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/beta-catenin signaling in response to tooth damage. Sci Rep. 2017;7:3102. doi: 10.1038/s41598-017-03145-6   DOI
14 Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165:1586-97. doi: 10.1016/j.cell.2016.05.082   DOI
15 Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551-4. doi: 10.1038/nature13536   DOI
16 Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015;142:3113-25. doi: 10.1242/dev.118570   DOI
17 Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18:246-54. doi: 10.1038/ncb3312   DOI
18 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S,Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7. doi: 10.1126/science.284.5411.143   DOI
19 Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12:126-31. doi: 10.1038/nrm3049   DOI