• Title/Summary/Keyword: stem model

Search Result 600, Processing Time 0.027 seconds

Change of the Cement Mantle Thickness According to the Movement of the Femoral Stem in THRA (인공고관절 치환술에서 대퇴주대 회전에 따른 시멘트막 두께 변화)

  • Park, Yong-Kuk;Kim, Jin-Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.140-148
    • /
    • 2007
  • THRA(Total Hip Replacement Arthroplasty) has been widely used for several decades as a viable treatment of otherwise-unsolved hip problems. In THRA surgery, cement mantle thickness is critical to long-term implant survival of femoral stem fixed with cement. Numerous studies reported thin or incomplete cement mantle causes osteolysis, loosening, and the failure of implant. To analyze the effect of femoral stem rotation on cement thickness, in this study, we select two most popular stems used in THRA. Using CAD models obtained from a 3D scanner, we measure the cement mantle thickness developed by the rotation of a femoral stem in the virtual space created by broaching. The study shows that as the femoral stem deviates from the target coordinates, the minimum thickness of cement decreases. Therefore, we recommend development of a new methodology for accurate insertion of a femoral stem along the broached space. Also, modification of the stem design robust to the unintentional movement of a femoral stem in the broached space, can alleviate the problem.

Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells

  • Shin, Dong-Hyuk;Lee, Jeoung-Eun;Eum, Jin Hee;Chung, Young Gie;Lee, Hoon Taek;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2017
  • Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

Evaluation of Major Taper Equation Models for Developing a Stem Volume Table of Cryptomeria japonica in Jeju Island (제주도 삼나무 수간재적표 개발을 위한 주요 수간곡선식 비교)

  • Hyun-Soo, Kim;Su-Young, Jung;Kwang-Soo, Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.11
    • /
    • pp.941-950
    • /
    • 2022
  • This study was conducted to provide data and stem information to establish a local volume table of Cryptomeria japonica in Jeju Island. Stem analysis was performed on 26 trees by selecting two average trees from each site of the 13 plots of C. japonica stands in 2021 and 2022. During the analysis stage, one outlier tree was rejected, and a total of 260 observations of the specific stem height of 25 trees were used. Of the seven major taper equation models applied for parameter estimation and statistical verification, the Muhairwe 1999 model was found to be the best fit and selected as the optimal model. Stem shape-related estimates were acquired through the selected model, and sectional measurements according to the Smalian formula applied at an interval of 10 cm from the height of the stem were used to develop a volume table. A paired t-test comparison between the C. japonica volume obtained from the present study and those selected from the current yield table by NIFoS(2020), revealed significant differences (p<0.05), highlighting the necessity of a local volume table for C. japonica in Jeju Island.

Biological Response Modifiers Influence Structure Function Relationship of Hematopoietic Stem and Stromal Cells in a Mouse Model of Leukemia

  • Basu, Kaustuv;Mukherjee, Joydeep;Law, Sujata;Chaudhuri, Samaresh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2935-2941
    • /
    • 2012
  • Biological response modifiers (BRMs) can alter interactions between the immune system and cancer cells to boost, direct, or restore the body's ability to fight disease. Mice with ethylnitrosourea- (ENU) induced leukemia were here used to monitor the therapeutic efficacy of lipopolysaccaride (LPS), Bacillus Calmette Guerin (BCG) and sheep erythrocytes (SRBC). Flow cytometry based CD34+ positivity analysis, clonogenicity, proliferation and ultrastructure studies using scanning electron microscopy (SEM) of stem cells in ENU induced animals with and without BRMs treatment were performed. BRMs improved the stem-stromal relationship structurally and functionally and might have potential for use as an adjunct in human stem cell therapy.

Korean Prosody Generation Based on Stem-ML (Stem-ML에 기반한 한국어 억양 생성)

  • Han, Young-Ho;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.54
    • /
    • pp.45-61
    • /
    • 2005
  • In this paper, we present a method of generating intonation contour for Korean text-to-speech (TTS) system and a method of synthesizing emotional speech, both based on Soft template mark-up language (Stem-ML), a novel prosody generation model combining mark-up tags and pitch generation in one. The evaluation shows that the intonation contour generated by Stem-ML is better than that by our previous work. It is also found that Stem-ML is a useful tool for generating emotional speech, by controling limited number of tags. Large-size emotional speech database is crucial for more extensive evaluation.

  • PDF

Guidelines for Manufacturing and Application of Organoids: Kidney

  • Hyun Mi Kang;Dong Sung Kim;Yong Kyun Kim;Kunyoo Shin;Sun-Ju Ahn;Cho-Rok Jung
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.141-146
    • /
    • 2024
  • Recent advancements in organoid technology have led to a vigorous movement towards utilizing it as a substitute for animal experiments. Organoid technology offers versatile applications, particularly in toxicity testing of pharmaceuticals or chemical substances. However, for the practical use in toxicity testing, minimal guidance is required to ensure reliability and relevance. This paper aims to provide minimal guidelines for practical uses of kidney organoids derived from human pluripotent stem cells as a toxicity evaluation model in vitro.

Non-destructive weight measurement by using a vibration model

  • Tsuruoka, Hisashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.777-781
    • /
    • 1988
  • A method for weighing fruits without separating them from stem is proposed. The base of stem is fixed and a fruit or a cluster of fruits is forced to vibrate. The approximated vibration model is constructed by the use of Transfer Matrix Method. The natural frequency (w) in this model can be represented as a function of weight elements, and the length and stiffness of branch elements of stem. With this function, only w is possible to measure. However, several small weights whose weights are known are attached to weight elements in various combinations. From these equations, unknown parameters are determined so that the weight of each fruit can be obtained by a non-destructive method.

  • PDF

Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

  • Liu, Zhaogang;Jin, Guangze;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.576-583
    • /
    • 2009
  • Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

Lung Organoid on a Chip: A New Ensemble Model for Preclinical Studies

  • Hyung-Jun Kim;Sohyun Park;Seonghyeon Jeong;Jihoon Kim;Young-Jae Cho
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.30-37
    • /
    • 2024
  • The lung is a complex organ comprising a branched airway that connects the large airway and millions of terminal gas-exchange units. Traditional pulmonary biomedical research by using cell line model system have limitations such as lack of cellular heterogeneity, animal models also have limitations including ethical concern, race-to-race variations, and physiological differences found in vivo. Organoids and on-a-chip models offer viable solutions for these issues. Organoids are three-dimensional, self-organized construct composed of numerous cells derived from stem cells cultured with growth factors required for the maintenance of stem cells. On-a-chip models are biomimetic microsystems which are able to customize to use microfluidic systems to simulate blood flow in blood channels or vacuum to simulate human breathing. This review summarizes the key components and previous biomedical studies conducted on lung organoids and lung-on-a-chip models, and introduces potential future applications. Considering the importance and benefits of these model systems, we believe that the system will offer better platform to biomedical researchers on pulmonary diseases, such as emerging viral infection, progressive fibrotic pulmonary diseases, or primary or metastatic lung cancer.

Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

  • Lee, Min Ju;Yoon, Tae Gyoon;Kang, Moonkyu;Kim, Hyun Jeong;Kang, Kyung Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.