• Title/Summary/Keyword: stem model

Search Result 585, Processing Time 0.022 seconds

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Preliminary Study on Effect of Lactiplantibacillus plantarum on Osteoporosis in the Ovariectomized Rat

  • Eun-Sun Jin;Ji Yeon Kim;JoongKee Min;Sang Ryong Jeon;Kyoung Hyo Choi;Shehzad Abid Khan;Gi-Seong Moon;Je Hoon Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.712-720
    • /
    • 2023
  • Osteoporosis is a growing global health concern primarily associated with decreased estrogen in postmenopausal women. Recently, some strains of probiotics were examined for potential anti-osteoporotic effects. This study intended to evaluate the impacts of Lactiplantibacillus plantarum MGE 3038 strain (MGE 3038) in ovariectomized rats. For this purpose, twelve weeks old female Wistar rats (n=21; 250-300 g) were divided into 3 groups; ovariectomy (OVX) group, OVX/MGE 3038 group and Sham group (control). In these groups; two went through respective OVX and one had daily MGE 3038 administration through oral gavage. Prior to 16 weeks after OVX, we collected blood samples and extracted the tibiae. We scanned the extracted tibiae by in-vivo micro-computed tomography (micro-CT) and evaluated pathology by hematoxylin and eosin (H&E) and Masson's trichrome staining. The serum levels of C-telopeptide of type I collagen (CTX), osteocalcin (OC), and the receptor activator of nuclear factor-κB ligand (RANKL) were examined. The OVX/MGE 3038 group showed increases in bone mineral density, trabecular bone volume, trabecular number, and trabecular thickness (Tb.Th), and a decrease in trabecular spacing than the OVX group. However, OVX/MGE 3038 group and control group were measurably comparable in Tb.Th. Micro-CT, H&E, and Masson's trichrome findings exhibited increased preservation and maintenance of trabecular bone structure in the OVX/MGE 3038 group in comparison to the OVX group. In serum, the levels of CTX, OC and RANKL were significantly different between the OVX and OVX/MGE 3038 groups. Taken together, L. plantarum MGE 3038 could be helpful for the treatment of osteoporosis.

Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model

  • Jun-Beom Park;InSoo Kim;Won Lee;Heesung Kim
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.467-477
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate the regenerative capacity of stem cells combined with bone graft material and a collagen matrix in rabbit calvarial defect models according to the type and form of the scaffolds, which included type I collagen matrix and synthetic bone. Methods: Mesenchymal stem cells (MSCs) were obtained from the periosteum of participants. Four symmetrical 6-mm-diameter circular defects were made in New Zealand white rabbits using a trephine drill. The defects were grafted with (1) group 1: synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs; (2) group 2: collagen matrix and 1×105 MSCs; (3) group 3: β-TCP/HA, collagen matrix covering β-TCP/HA, and 1×105 MSCs; or (4) group 4: β-TCP/HA, chipped collagen matrix mixed with β-TCP/HA, and 1×105 MSCs. Cellular viability and cell migration rates were analyzed. Results: Uneventful healing was achieved in all areas where the defects were made at 4 weeks, and no signs of infection were identified during the healing period or at the time of retrieval. New bone formation was more evident in groups 3 and 4 than in the other groups. A densitometric analysis of the calvarium at 8 weeks post-surgery showed the highest values in group 3. Conclusions: This study showed that the highest regeneration was found when the stem cells were applied to synthetic bone along with a collagen matrix.

Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway

  • Zhenyu Guo;Tingqin Huang;Yingfei Liu;Chongxiao Liu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.315-325
    • /
    • 2023
  • Background and Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM. Methods and Results: Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP. Conclusions: Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.

Regenerative Effect of Adipose Derived Mesenchymal Stem Cells on Ganglion Cells in the Hypoxic Organotypic Retina Culture

  • Meital Ben Dov;Bryan Krief;Moshe Benhamou;Ainat Klein;Shula Schwartz;Anat Loewenstein;Adiel Barak;Aya Barzelay
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.244-249
    • /
    • 2023
  • Background and Objectives: To examine whether ischemic retinal ganglion cells (RGCs) will be salvaged from cell death by human adipose-derived mesenchymal stem cells (ADSCs) in an organotypic retina model. Methods and Results: Deprived of arterial oxygen supply, whole mice retinas were cultured as an ex vivo organotypic cultures on an insert membrane in a 24-well plate. The therapeutic potential of ADSCs was examined by co-culture with organotypic retinas. ADSCs were seeded on top of the RGCs allowing direct contact, or at the bottom of the well, sharing the same culture media and allowing a paracrine activity. The number of surviving RGCs was assessed using Brn3a staining and confocal microscopy. Cytokine secretion of ADSCs to medium was analyzed by cytokine array. When co-cultured with ADSCs, the number of surviving RGCs was similarly significantly higher in both treatment groups compared to controls. Analysis of ADSCs cytokines secretion profile, showed secretion of anti-apoptotic and pro-proliferative cytokines (threshold>1.4). Transplantation of ADSCs in a co-culture system with organotypic ischemic retinas resulted in RGCs recovery. Since there was no advantage to direct contact of ADSCs with RGCs, the beneficial effect seen may be related to paracrine activity of ADSCs. Conclusions: These data correlated with secretion profile of ADSCs' anti-apoptotic and pro-proliferative cytokines.

Identification and Characterization of a KDR-positive Mesoderm Population Derived from Human Embryonic Stem Cells Post BMP4 Treatment (BMP4 처리에 의한 인간 배아줄기세포 유래 KDR 양성 중배엽성 세포군의 분화 양상 조사)

  • Kim, Jung-Mo;Son, On-Ju;Cho, Youn-Jeong;Lee, Jae-Ho;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The functional cardiovascular system is comprised of distinct mesoderm-derived lineages including endothelial cells, vascular smooth muscle cells and other mesenchymal cells. Recent studies in the human embryonic stem cell differentiation model have provided evidence indicating that these cell lineages are developed from the common progenitors such as hemangioblasts and cardiovascular progenitor cells. Also, the studies have suggested that these progenitors have a common primordial progenitor, which expresses KDR (human Flk-1, also known as VEGFR2, CD309). We demonstrate here that sustained activation of BMP4 (bone morphogenetic protein 4) in hESC line, CHA15 hESC results in $KDR^+$ mesoderm specific differentiation. To determine whether the $KDR^+$ population derived from hESCs enhances potential to differentiate along multipotential mesodermal lineages than undifferentiated hESCs, we analyzed the development of the mesodermal cell types in human embryonic stem cell differentiation cultures. In embryoid body (EB) differentiation culture conditions, we identified an increased expression of $KDR^+$ population from BMP4-stimulated hESC-derived EBs. After induction with additional growth factors, the $KDR^+$ population sorted from hESCs-derived EBs displays mesenchymal, endothelial and vascular smooth muscle potential in matrix-coated monolayer culture systems. The populations plated in monolayer cultures expressed increased levels of related markers and exhibit a stable/homologous phenotype in culture terms. In conclusion, we demonstrate that the $KDR^+$ population is stably isolated from CHA15 hESC-derived EBs using BMP4 and growth factors, and sorted $KDR^+$ population can be utilized to generate multipotential mesodermal progenitors in vitro, which can be further differentiated into cardiovascular specific cells.

Detection of Neural Fates from Random Differentiation : Application of Support Vector MachineMin

  • Lee, Min-Su;Ahn, Jeong-Hyuck;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Embryonic stem cells can be differentiated into various types of cells, requiring a tight regulation of transcription. Biomarkers related to each lineage of cells are used to guide the differentiation into neural or any other fates. In previous experiments, we reported the guided differentiation (GD)-specific genes by comparing profiles of random differentiation (RD). Interestingly 68% of differentially expressed genes in GD overlap with that of RD, which makes it difficult for us to separate the lineages by examining several markers. In this paper, we design a prediction model to identify the differentiation into neural fates from any other lineage. From the profiles of 11,376 genes, 203 differentially expressed genes between neural and random differentiation were selected by random variance T-test with 95% confidence and 5% false discovery rate. Based on support vector machine algorithm, we could select 79 marker genes from the 203 informative genes to construct the optimal prediction model. Here we propose a prediction model for the prediction of neural fates from random differentiation which is constructed with a perfect accuracy.

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Statistical Analysis of Gene Expression Data

  • 박태성
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.97-115
    • /
    • 2001
  • cDNA microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. Many statistical analysis tools become widely applicable to the analysis of cDNA microarray data. In this talk, we consider a two-way ANOVA model to differentiate genes that have high variability and ones that do not. Using this model, we detect genes that have different gene expression profiles among experimental groups. The two-way ANOVA model is illustrated using cDNA microarrays of 3,800 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.

  • PDF

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee;Yun-Jung Na;Su-Min Seong;Dohee Ahn;Kyung-Chul Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.368-378
    • /
    • 2024
  • Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.