• Title/Summary/Keyword: stem culture

Search Result 790, Processing Time 0.034 seconds

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction

  • Islam Mohamed Saadeldin;Seif Ehab;Ahmed Elsayed Noreldin;Ayman Abdel-Aziz Swelum;Seonggyu Bang;Hyejin Kim;Ki Young Yoon;Sanghoon Lee;Jongki Cho
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.40.1-40.19
    • /
    • 2024
  • Importance: The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. Observations: This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. Conclusions and Relevance: This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.

Efficient Culture Method for Early Passage hESCs after Thawing (초기 계대 인간 배아줄기세포의 해동 후 효율적인 배양 방법)

  • Baek, Jin-Ah;Kim, Hee-Sun;Seol, Hye-Won;Seo, Jin;Jung, Ju-Won;Yoon, Bo-Ae;Park, Yong-Bin;Oh, Sun-Kyung;Ku, Seung-Yup;Kim, Seok-Hyun;Choi, Young-Min;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.311-319
    • /
    • 2009
  • Objective: Human embryonic stem cells (hESCs) have the capacity to differentiate into all of the cell types and therefore hold promise for cell therapeutic applications. In order to utilize this important potential of hESCs, enhancement of currently used technologies for handling and manipulating the cells is required. The cryopreservation of hESC colonies was successfully performed using the vitrification and slow freezing-rapid thawing method. However, most of the hESC colonies were showed extremely spontaneous differentiation after freezing and thawing. In this study, we were performed to rapidly collect of early passage hESCs, which was thawed and had high rate of spontaneously differentiation of SNUhES11 cell line. Methods: Four days after plating, partially spontaneously differentiated parts of hESC colony were cut off using finely drawn-out dissecting pipette, which is mechanical separation method. Results: After separating of spontaneously differentiated cells, we observed that removed parts were recovered by undifferentiated cells. Furthermore, mechanical separation method was more efficient for hESCs expansion after thawing when we repeated this method. The recovery rate after removing differentiated parts of hESC colonies were 55.0%, 74.5%, and 71.1% when we have applied this method to three passages. Conclusion: Mechanical separation method is highly effective for rapidly collecting and large volumes of undifferentiated cells after thawing of cryopreserved early passage hESCs.

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.

Induction of Midbrain Dopaminergic Phenotype in Nurr 1-Over expressing Human Neural Stem Cells (사람 신경 간세포에서 도파민 신경세포 분화유도에 대한 Nurr 1 유전자의 역할 규명)

  • Kim, Han-Jip;Lee, Haksup;Kim, Hyon-Chang;Min, Churl-Ki;Lee, Myung-Ae;Kim, Seung-Up;Han, Jin;Youm, Jae-Boum;Kim, Nari;Park, Won, Sun;Kim, Taeho;Kim, Euiyong;Han, Il-Yong
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.363-370
    • /
    • 2005
  • Neural stem cells (NSCs) of the central nervous system (CNS) have raised a great interest not only for their importance in basic neural development but also for their therapeutic potentials in neurologically degenerative diseases such as Parkinson's, Alzheimer and stroke. During the CNS development, two molecular cascades determine specification of midbrain dopamine system. In one pathway, FGF-8, sonic hedgehog and transcription factor Nurr1 specify dopamine neurotransmitter phenotype. In the other, transcription factors $Lm{\times}lb\;and\;Pt{\times}3$ are required for induction of dopaminergic neurons. In Nurr1 knockout mouse, tyrosine hydroxylase (TH) positive cells fail to appear in substantia nigra, indicating that Nurr1 is essential in specification of dopaminergic cell phenotype. In this study, we used the immortalized human NSCs retrovirally transduced with Nurr1 gene to probe the Nurr1 mediated mechanism to induce dopamine phenotype. While Nurr1 over-expression alone did not generate dopamine phenotype in NSCs, applications of retinoid and forskolin induced expression of TH and AADC mRNAs. In addition, co-cultures of Nurr1 expressing NSCs with human astrocytes induced a marked increase of TH expression. In this co-culture system, the addition of retinoid and forskolin dramatically increased expression of TH. These results indicate that the immortalized human NSCs with Nurr1 gene could have a clinical utility for cell replacement for the Parkinson patients.

Studies on the Tissue Culture of Korean-Ginseng III. Effects of NAA on the Callus Induction and Organ Differentiation trom Korean-ginseng Explants (고려인삼의 조직배양에 관한 연구 제3보 NAA가 인삼 Callus의 유기 및 기관의 변화에 미치는 영향)

  • 조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.110-114
    • /
    • 1981
  • These experiments were carried out to define the effects of NAA, 2, 4-D and Benzyladenine on the callus induction and the organ differentiation from the explants and to find out the vegetative propagation method of Korean ginseng. The results obtained are summarized as follows; 1. NAA was significantly effective in forming roots from the ginseng stem segment and the number of roots was increased by increasing NAA concentration in the medium. The roots were formed from both distal and proximal ends of the ginseng stem segments grown on the medium containing more than 2mg/L of NAA. 2. The amount of callus growth increased proportionatly with NAA concentration in the range of 4.0mg per liter in the medium. The callus was easly induced from stem segment than leaf segment and 2, 4-D was more effective in callus induction and growth than NAA. 3. The benzyladenine showed the significant inhibition effect in forming roots from ginseng explant. The callus was not induced with BA alone, but in BA and 2, 4-D or BA and NAA added medium, the callus was easily induced and its growth was also accelerated. The interaction effects between 2, 4-D and BA on the callus induction and growth were significantly higher than those between NAA and BA. 4. As the ginseng embryos were cultured on the M.S. medium supplemented with 2mg per liter NAA, number of shoots was significantly increased and the percentage of embryo which had shown more than 4 shoots later was 22.2%. On the medium containing 8mg per liter NAA, the ginseng embryo showed the normal growth of shoots and leaves, but increased roots and callus induction on the basal part of shoots. 5. When the shoots with 3 leaflets were cut in 1.5cm long and grown on the Blayde's medium containing NAA 1.0mg per liter, roots were formed at the proximal end of shoot, and a new ginseng seedling was successfully obtained.

  • PDF

Quality and Fruit Productivity of the Second Truss Blooming Seedlings Depending on Concentration of Nutrient Solution in Cherry Tomato (양액 농도에 따른 방울토마토 2화방 개화묘의 소질 및 과실 생산성)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.230-236
    • /
    • 2022
  • This study was carried out to produce two-flowered seedlings, harvest them early in a greenhouse, and extend the harvest period. This study was carried out to effectively produce the second truss blooming seedlings to harvest tomatoes early and extend the harvest period. For production of the second truss blooming seedlings (one stem), the nutrient solution EC was supplied at 1.5, 2.0, 2.5 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 60 days, which was 20-40 days longer than conventional seedlings, and 10 days longer than the first truss blooming seedlings (cube seedlings). The plant height was 78 and 77 cm in EC 2.5 dS·m-1 and dynamic management respectively, which was shorter than EC 1.5 dS·m-1 with 88 cm. As for the EC in the cube before formulation, dynamic management had the highest EC 5.5 dS·m-1, and the cube supplied with EC 1.5 dS·m-1 had the lowest. The production yield by treatment did not a difference among in the second truss blooming seedlings, but the first truss blooming seedlings showed lower productivity than second truss blooming seedlings. The second truss blooming seedling were harvested 35 days after planting on June 4, the first harvest date, and the first truss blooming were harvested in 42 days on June 11th. There was no difference in plant height and root growth due to bending at frequency planting. In the study on the production of the second truss blooming seedlings (two stem), the nutrient solution EC was supplied under 2.0, 2.5, 3.0 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 90 days, which was 40-50 days longer than conventional seedlings and 10 days longer than the first truss blooming seedlings (cube seedlings). Plant height was 80 and 81 cm in EC 2.0 dS·m-1 and 2.5 dS·m-1 respectively, but was the shortest at 73 cm in dynamic management. EC in the medium increased as the seeding period increased in all treatments. The dynamic management was the highest with EC 5.1 dS·m-1. There was no difference in yield among EC treatments in the second truss blooming seedlings, which had a longer seeding period of about 10 days, produced 15% more than the first truss blooming seedlings. In order to shorten the plant height of the second truss blooming seedlings, it is judged that the most efficient method is increasing the concentration of nutrient solution.

Use of Peristeum as a Source of Endothelial-like Cells (혈관내피유사세포 채취의 원천으로 골막의 활용)

  • Park, Bong-Wook;Kim, Shin-Won;Kim, Uk-Kyu;Hah, Young-Sool;Kim, Jin-Hyun;Kim, Deok-Ryong;Sung, Iel-Young;Cho, Yeong-Cheol;Son, Jang-Ho;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

The Effect of $\textrm{NO}_3$-N and $\textrm{NH}_4$-N Ratio on the Growth of Perilla frutescens in Hydroponics (수경재배시 $\textrm{NO}_3$-N과 $\textrm{NH}_4$-N의 비율이 잎들깨의 생육에 미치는 영향)

  • 김영식
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1993
  • The effect of NO$_3$-N and NH$_4$-N ratio on the growth of Perilla frutescens in deep flow culture was studied in winter season. NO$_3$-N and NH$_4$-N were treated in the ratios of 12 : 0, 9 : 3, 6 : 6(me/ $\ell$ ). The pH of the nutrient solution was increased an NO$_3$-N:NH$_4$-N=12 : 0 treatment, and decreased in the treatments containing NH$_4$-N, greatly in NO$_3$-N : NH$_4$-N = 6 : 6 treatment. The EC was increased regardless of treatments, but more increased in the treatments containing NH$_4$-N. The stem-base circumference, plant height, root weight, shoot weight, and yields of leaves were by far the highest in NO$_3$-N:NH$_4$-N=6 : 6 treatment and the lowest in NO$_3$-N:NH$_4$-N= 12 : 0 treatment. Among the mineral contents of leaves, N, K, Fe and P were higher in the treatments containing NH$_4$-N. Ca, Mg and Mn were higher in NO$_3$-N :NH$_4$-N= 12 : 0 treatment.

  • PDF

Raising Seedling at Hallasan Area of Sub-Alpine Improved Fruiting Rate of Squash (Cucurbita maxima) (단호박 착과율 향상을 위한 한라산 중산간지 육묘효과)

  • Seong, Ki-Cheol;Kim, Chun-Hwan;Lee, Jin-Soo;Kim, Doo-Seob;Um, Yeong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.385-389
    • /
    • 2006
  • This study was carried out to determine the effect of raising seedling at Hallasan area of sub-alpine (altitude of 600m above sea level) to improve fruiting.ate of Squash (Cucurbita maxima) in retarding culture. 'Ebis' cultivar was seeded in plug tray of 32 cells and the seedlings were grown for 25 days. They were transplanted on August 26, 2004, following L-stem training method under rain-shielding condition. Seedling height, number of nodes and leaf area were higher in lowland than in sub-alpine area. T/R ratio of seedling in sub-alpine was much lower as compared with that in the lowland. The first fruiting was on the 19th node in sub-alpine area, and on the 26th node in the lowland area(control). The succeeding fruiting nodes were lower by 3 to 5 node than those of control. Fruiting rate of second flower was improved by 17.2% compared with the 1.4% in control. The marketable yield was increased by 27% by raising seedling in sub-alpine area (4,460 kg/10a). This also brought out 20% labour saving effect. The environmental condition for raising seedling in the sub-alpine area of Hallasan was effective for the improvement of Squash (Cucurbita maxima) fruiting rate compared with lowland area.