• Title/Summary/Keyword: stem cell therapy

Search Result 447, Processing Time 0.023 seconds

Current trends of stem cell-mediated gene therapy (줄기 세포 분야의 유전자 치료 연구 동향)

  • Oh, Yu-Kyoung;Chung, Hyung-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Recently, stem cell-mediated gene therapy is emerging as a novel therapeutic approach. For the successful gene modification of stem cells, the development of a suitable gene transfer technique needs to be preceded. This review focuses on the various gene transfer techniques based on nonviral and viral vectors, and physical methods. The advantages and disadvantages of each gene transfer method are compared, and the general properties of these vectors are discussed in relation to the gene transfer in stem cell research. This review also highlights the therapeutic application of stem cell-mediated gene therapy. The choice of gene transfer vectors may vary depending on the type of the stem cells and the target of stem cell therapy. Of various gene transfer methods, viral vector-based gene therapy has been emphasized due to the higher transfection efficiency. The current status and up-to-date findings of stem cell-mediated gene therapy are discussed in the viewpoint of the various targets of stem cell therapy such as the modification of stem cell potency, the acceleration of regeneration process and the formation of expressional organization.

Effects of Photobiomodulation on Stem Cells Important for Regenerative Medicine

  • Chang, So-Young;Carpena, Nathaniel T.;Kang, Bong Jin;Lee, Min Young
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.134-141
    • /
    • 2020
  • The use of stem cell therapy to treat various diseases has become a promising approach. The ability of stem cells to self-renew and differentiate can contribute significantly to the success of regenerative medical treatments. In line with these expectations, there is a great need for an efficient research methodology to differentiate stem cells into their specific targets. Photobiomodulation (PBM), formerly known as low-level laser therapy (LLLT), is a relatively non-invasive technique that has a therapeutic effect on damaged tissue or cells. Recent advances in adapting PBM to stem cell therapy showed that stem cells and progenitor cells respond favorably to light. PBM stimulates different types of stem cells to enhance their migration, proliferation, and differentiation in vitro and in vivo. This review summarizes the effects of PBM on targeted differentiation across multiple stem cell lineages. The analytical expertise gained can help better understand the current state and the latest findings in PBM and stem cell therapy.

Human Pluripotent Stem Cell-Derived Retinal Organoids: A Viable Platform for Investigating the Efficacy of Adeno-Associated Virus Gene Therapy

  • Hyeon-Jin Na;Jae-Eun Kwon;Seung-Hyun Kim;Jiwon Ahn;Ok-Seon Kwon;Kyung-Sook Chung
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2024
  • With recent advances in adeno-associated virus (AAV)-based gene therapy, efficacy and toxicity screening have become essential for developing gene therapeutic drugs for retinal diseases. Retinal organoids from human pluripotent stem cells (hPSCs) offer a more accessible and reproducible human test platform for evaluating AAV-based gene therapy. In this study, hPSCs were differentiated into retinal organoids composed of various types of retinal cells. The transduction efficiencies of AAV2 and AAV8, which are widely used in clinical trials of inherited retinal diseases, were analyzed using retinal organoids. These results suggest that retinal organoids derived from hPSCs serve as suitable screening platforms owing to their diverse retinal cell types and similarity to the human retina. In summary, we propose an optimal stepwise protocol that includes the generation of retinal organoids and analysis of AAV transduction efficacy, providing a comprehensive approach for evaluating AAV-based gene therapy for retinal diseases.

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

Stem Cell Biotechnology for Cell Therapy

  • LEE Dong-Ree;KIM Ha Won
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.199-206
    • /
    • 2005
  • Cell therapy (CT) is a group of techniques to treat human disorders by transplantation of cells which have been processed and propagated independent of the living body. Blood transfusion and bone marrow transplant have been the primary examples of cell therapy. With introduction of stem cell (SC) technologies, however, CT is perceived as the next generation of biologies to treat human diseases such as cancer, neurological diseases, and heart disease. Despite potential of cell therapy, insufficient guidelines have been implemented concerning safety test and regulation of cell therapy. This review addresses the safety issues to be resolved for the cell therapy, especially SC therapy, to be successfully utilized for clinical practice. Adequate donor cell screening must preceed to ensure safety in cell therapy. In terms of SC culture, controlled, standardized practices and procedures should be established. Further molecular studies should be done on SC development and differentiation to enhance safety level in cell therapy. Finally, animal model must be further installed to evaluate toxicity, new concepts, and proliferative potential of SC including alternative feeder layer of animal cells.

Nervonic Acid Inhibits Replicative Senescence of Human Wharton's Jelly-Derived Mesenchymal Stem Cells

  • Sun Jeong Kim;Soojin Kwon;Soobeen Chung;Eun Joo Lee;Sang Eon Park;Suk-Joo Choi;Soo-Young Oh;Gyu Ha Ryu;Hong Bae Jeon;Jong Wook Chang
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.80-90
    • /
    • 2024
  • Cellular senescence causes cell cycle arrest and promotes permanent cessation of proliferation. Since the senescence of mesenchymal stem cells (MSCs) reduces proliferation and multipotency and increases immunogenicity, aged MSCs are not suitable for cell therapy. Therefore, it is important to inhibit cellular senescence in MSCs. It has recently been reported that metabolites can control aging diseases. Therefore, we aimed to identify novel metabolites that regulate the replicative senescence in MSCs. Using a fecal metabolites library, we identified nervonic acid (NA) as a candidate metabolite for replicative senescence regulation. In replicative senescent MSCs, NA reduced senescence-associated 𝛽-galactosidase positive cells, the expression of senescence-related genes, as well as increased stemness and adipogenesis. Moreover, in non-senescent MSCs, NA treatment delayed senescence caused by sequential subculture and promoted proliferation. We confirmed, for the first time, that NA delayed and inhibited cellular senescence. Considering optimal concentration, duration, and timing of drug treatment, NA is a novel potential metabolite that can be used in the development of technologies that regulate cellular senescence.

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

Clinical utilization of cord blood over human health: experience of stem cell transplantation and cell therapy using cord blood in Korea

  • Lee, Young-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.3
    • /
    • pp.110-116
    • /
    • 2014
  • Cord blood (CB) has been used as an important and ethical source for hematopoietic stem cell transplantation (SCT) as well as cell therapy by manufacturing mesenchymal stem cell, induced pleuripotential stem cell or just isolating mononuclear cell from CB. Recently, the application of cell-based therapy using CB has expanded its clinical utility, particularly, by using autologous CB in children with refractory diseases. For these purposes, CB has been stored worldwide since mid-1990. In this review, I would like to briefly present the historical development of clinical uses of CB in the fields of SCT and cell therapy, particularly to review the experiences in Korea. Furthermore, I would touch the recent banking status of CB.

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.