• Title/Summary/Keyword: stem analysis

Search Result 1,404, Processing Time 0.026 seconds

Quantitative Trait Loci for Stem Length in Soybean Using a Microsatellite Markers (콩에서 Microsatellite 마커를 이용한 양적형질 유전자의 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Kong, Hyeun-Jong;Park, In-Soo
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.339-344
    • /
    • 2004
  • Identification of individual quantitative trait loci (QTL) is a prerequisite to application of marker-assisted selection for stern length. Two simple sequence repeat (SSR)-based linkage maps were constructed from recombination inbred line populations between cross of Keunolkong and Shinpaldalkong. Two parents used differed greatly in stem length, which were 30.57 cm and 49.75 cm in Keunolkong and Shinpaldalkong, respectively. Using the constructed maps, regression analysis and interval mapping were performed to identify QTLs conferring stem length. Four QTLs for stem length on linkage groups (LG) F, J, N and O were identified in the Keunolkong ${\times}$ Shinpaldalkong population and they totally explained 37.83% of variation for stem length. In the population, two major QTLs on LG J and O conditioning 14.25% and 10.68% of the phenotypic variation in stem length were determined and two QTLs with minor effect were detected on LG F and N. Identification of QTLs for stem length and mapping individual locus should facilitate to describe genetic mechanisms for stem length in different population. SSR markers tightly linked to QTLs for stem length allow to accelerate the elimination of deleterious genes and selection for desirable recombinants at early stage in crop breeding programs.

Neurogenic potentials of human amniotic fluid-derived stem cells according to expression levels of stem cell markers and ingredients of induction medium

  • Lim, Eun Hye;Cho, Jung Ah;Park, Ho;Song, Tae Jong;Kim, Woo Young;Kim, Kye Hyun;Lee, Kyo Won
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Purpose: We investigated the neurogenic potentials of amniotic fluid-derived stem cells (AFSCs) according to the expression levels of stem cell markers and ingredients in the neural induction media. Materials and Methods: Four samples of AFSCs with different levels of Oct-4 and c-kit expression were differentiated neurally, using three kinds of induction media containing retinoic acid (RA) and/or a mixture of 3-isobutyl-1-methylxanthine/indomethacin/insulin (neuromix), and examined by immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) for their expression of neurospecific markers. Results: The cells in neuromix-containing media displayed small nuclei and long processes that were characteristic of neural cells. RT-PCR analysis revealed that the number of neural markers showing upregulation was greater in cells cultured in the neuromix-containing media than in those cultured in RA-only medium. Neurospecific gene expression was also higher in Oct-4 and c-kit double-positive cells than in c-kit-low or -negative cells. Conclusion: The stem cell marker c-kit (rather than Oct-4) and the ingredient neuromix (rather than RA) exert greater effects on neurogenesis of AFSCs.

Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury

  • Park, Hwan-Woo;Oh, Soonyi;Lee, Kyung Hee;Lee, Bae Hwan;Chang, Mi-Sook
    • International Journal of Stem Cells
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 2018
  • Background and Objectives: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. Methods: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. Results: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. Conclusions: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.

The Development and Application of Activity-Centered STEM Education Program of Electricity, Electronics Technology area in Middle School (중학교 전기전자기술 영역의 활동 중심 STEM 교육프로그램 개발 및 적용)

  • Bae, Seon-A
    • 대한공업교육학회지
    • /
    • v.36 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • The purpose of this study was to develop and apply activity-centered STEM education program of electricity and electronics technology are in middle schools. The program was developed on the emphasis of problem solving in real world in relation to knowledge, attitude, and skill of Science, Technology, Engineering, and Mathematics. Basically the activity-centered STEM education program was developed through three steps of preparation, development and improvement. In the preparation stage the fellowing was included: (1) need analysis of student, educator, society (2) selection of integration type (3) analyzing subject matter of electricity, electronics area (4) establishing criteria for selecting activity tasks. In the development stage the fellowing was conducted: (1) selection of activity tasks (2) setting up educational goals (3) analyzing activity and clarifing the detailed activity (4) selecting program content, (5) organization of instructional content (6) statement of instructional objectives (7) structuring STEM education program In the improvement stage the fellowing was consisted of: (1) verification of validity by experts (2) execution of pilot test and field test by students and correction of program. The results of the applied the Activity-Based STEM Education Program to 'Afterschool' activities of S middle school were as follow: First, student' satisfaction level was high. Second, student' achievement in the cognitive domain, and affective domain was positive change. Third, student' problem solving ability was positive effect.

Retrovirus Vector-Mediated Gene Transfer to the Chicken Blastodermal Cells Cultured In Vitro (체외 배양된 닭 배반엽 세포에 대한 Retrovirus Vector를 이용한 유전자 전이)

  • Park, Sung-Joon;Koo, Bon-Chul;Kwon, Mo-Sun;Chae, Whi-Gun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • The purpose of this study is to establish a basic culture system enabling in vitro culture of chicken blastodermal cells and to test the feasibility of retrovirus-mediated gene transfer to the cultured cells. The blastodermal cells were isolated from freshly laid eggs of stage X and cultured with or without STO feeder layer cells. Stem cell-like morphology was maintained after multiple passages and RT-PCR analysis proved expression of several stem cell specific genes. Immunocytochemical analysis using antibodies of anti-EMA-1 and anti-SSEA-1 also showed the feature of stem cells. Infection of the cultured blastodermal cells with LNCGW retrovirus vector resulted in successful transfer of foreign genes. The results of this study may be useful in establishing stem cell-mediated transgenic chicken production.

Growth Analysis of Red Pine (Pinus densiflora) by Stem Analysis in the Eastern Region of Korea

  • Seo, Yeongwan;Lee, Daesung;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • The study was performed to analyze the growth of the red pine (Pinus densiflora) in the Eastern Region of Korea. Stem profile data from a total of 8 dominant trees of which each tree represents its site were collected and used for the analysis. The stem volumes were calculated using Smalian's formula and much higher than the ones by Korea Forest Research Institute in larger than dbh 40 cm. The total bark volumes were more proportionally related to dbh and stem volume than to height and age. The bark thickness and volume decreased as relative height increases but increased as relative dbh increased. The average PAI of dbh and height reached the highest at 0.8 cm/yr (age 15) and at 0.45 m/yr (age 30) respectively, while the average PAI of volume steadily tended to increase up to age 80. The growth percentages of dbh, height and volume tended to decrease with age and volume growth percentage was higher than dbh and height.

Population Structure of Stagonosporopsis Species Associated with Cucurbit Gummy Stem Blight in Korea

  • Jeong, Yong-Jik;Kwon, Oh-Kyu;Jeong, A-Ram;Lee, Hyunji;Moon, Hyeran;Lee, O New;Hong, Jeum Kyu;Park, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.522-532
    • /
    • 2022
  • Gummy stem blight (GSB), a common and serious disease in cucurbits worldwide, is caused by three genetically distinct species: Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae. In Korea, however, the three species of Stagonosporopsis have been barely characterized. In this study, 21 Stagonosporopsis isolates were recovered from watermelon (Citrullus lanatus) and muskmelon (Cucumis melo) leaves and stem showing blight symptoms collected from 43 fields in Korea. Sequence analysis performed with an internal transcribed spacer region was not competent to differentiate the Stagonosporopsis isolates. On the contrary, analysis of β-tubulin (TUB) genes and three microsatellite markers, Db01, Db05, and Db06, successfully differentiated Stagonosporopsis isolates. Further sequence analysis identified two Stagonosporopsis species, S. citrulli and S. caricae, and one previously unknown species of Stagonosporopsis. Representative isolates from three species caused dark water-soaked lesions on the detached watermelon and muskmelon leaves with no significant differences in the aggressiveness. Our results indicate that the S. citrulli, S. caricae, and unknown Stagonosporopsis sp. are all causal agents of GSB for both watermelon and muskmelon. This is the first report of a new species and the population structure of Stagonosporopsis species causing GSB in Korea.

Gene Discovery Analysis from Mouse Embryonic Stem Cells Based on Time Course Microarray Data

  • Suh, Young Ju;Cho, Sun A;Shim, Jung Hee;Yook, Yeon Joo;Yoo, Kyung Hyun;Kim, Jung Hee;Park, Eun Young;Noh, Ji Yeun;Lee, Seong Ho;Yang, Moon Hee;Jeong, Hyo Seok;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • An embryonic stem cell is a powerful tool for investigation of early development in vitro. The study of embryonic stem cell mediated neuronal differentiation allows for improved understanding of the mechanisms involved in embryonic neuronal development. We investigated expression profile changes using time course cDNA microarray to identify clues for the signaling network of neuronal differentiation. For the short time course microarray data, pattern analysis based on the quadratic regression method is an effective approach for identification and classification of a variety of expressed genes that have biological relevance. We studied the expression patterns, at each of 5 stages, after neuronal induction at the mRNA level of embryonic stem cells using the quadratic regression method for pattern analysis. As a result, a total of 316 genes (3.1%) including 166 (1.7%) informative genes in 8 possible expression patterns were identified by pattern analysis. Among the selected genes associated with neurological system, all three genes showing linearly increasing pattern over time, and one gene showing decreasing pattern over time, were verified by RT-PCR. Therefore, an increase in gene expression over time, in a linear pattern, may be associated with embryonic development. The genes: Tcfap2c, Ttr, Wnt3a, Btg2 and Foxk1 detected by pattern analysis, and verified by RT-PCR simultaneously, may be candidate markers associated with the development of the nervous system. Our study shows that pattern analysis, using the quadratic regression method, is very useful for investigation of time course cDNA microarray data. The pattern analysis used in this study has biological significance for the study of embryonic stem cells.

Comparison of Biomechanical Stability of Custom-made Hip Implants using Finite Element Analysis (스템 길이에 따른 환자맞춤 인공고관절의 역학적 안정성 비교)

  • Jun, Yongtae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.426-432
    • /
    • 2016
  • Designing a morphologically well-fitted hip implant to a patient anatomy is desirable to improve surgical outcomes since a commercial ready-made hip implant may not well conform to the patient joint. In this study, biomechanical stability of patient-specific hip implants with two different stem lengths was compared and discussed using a 3D finite element analysis (FEA). The FEA results in this study showed that an increase in stem length brings about more the peaked von-Mises stress (PVMS) in the prosthesis and less in the femur. However the decrease in von-Mises stress in the femur causes stress shielding phenomenon that usually leads to considerable bone resorption. Although, in biomechanical stability point of view, this work recommends the use of smaller stems, the length of stem must be determined by considering both the von-Mises stress and the stress-shielding phenomenon.

HPLC and GC-MS Analysis of Phenolic Substances in Acer tegmentosum

  • Nugroho, Agung;Song, yong-Min;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The stem barks, heartwoods, and leaves of Acer tegmentosum (Aceraceae) are widely used in Korea to treat hepatic or cerebral disorders mainly due to alcohol poisoning. This study was aimed to analyze phenolic substances in A. tegmentosum. Quantitative analysis of the three phenolic substances (salidroside, (+)-catechin and scopoletin) was performed by HPLC and the identification of volatile phenolic substances were done by GC-MS. The contents of the three compounds in the three MeOH extracts were higher in the stem bark (salidroside: 80.22 mg/g, (+)-catechin: 23.31 mg/g, and scopoletin: 9.45 mg/g) compared to the heartwoods and leaves. And GC-MS analysis of the stem bark extract demonstrated that p-tyrosol is a main substance of twenty-one compounds identified.