• Title/Summary/Keyword: stellar evolution

Search Result 266, Processing Time 0.025 seconds

The Early Chemical Enrichment Histories of Two Sculptor Group Dwarf Galaxies as Revealed by RR Lyrae Variables

  • Yang, Soung-Chul;Wagner-Kaiser, Rachel;Sarajedini, Ata;Kim, Sang Chul;Kyeong, Jaemann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2014
  • We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST), we have identified a sample of RR Lyrae candidates in both dTrans galaxies [219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005]. The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of <[Fe/H]>_{ESO294} = -1.77 +/- 0.03 and <[Fe/H]>_{ESO410} = -1.64+/- 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well-described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: 1) The ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through "prompt initial enrichment" or an "initial nucleosynthetic spike" from the very first massive stars, or 2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55.

  • PDF

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

A MULTI-WAVELENGTH STUDY OF PAH-SELECTED STARBURST GALAXIES

  • Takagi, T.;Matsuhara, H.;Wada, T.;Ohyama, Y.;Oyabu, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.321-324
    • /
    • 2012
  • Using extensive mid-IR datasets from AKARI, i.e. 9-band photometry covering the wavelength range from $2{\mu}m$ to $24{\mu}m$ and the unbiased spectroscopic survey for sources with $S_{\nu}$($9{\mu}m$)>0.3 mJy, we study starburst galaxies specifically at the redshift of z ~ 0.5, whose mid-IR spectra are clearly dominated by the PAH emission features. PAH-selected galaxies, selected with extremely red mid-IR colour due to PAHs, have high rest-frame PAH-to-stellar luminosity ratios, comparable to those in the most active regions in nearby starburst galaxies. Thus, they seem to have active starburst regions spreading over the whole body. Furthermore, some of PAH-selected galaxies are found to have peculiar rest-frame 11-to-$8{\mu}m$ flux ratios, which is systematically smaller than nearby starburst/AGN spectral templates. This may indicate a systematic difference in the physical condition of ISM between nearby and distant starburst galaxies.

Multi-band imaging of the H2O and SiO masers around the late-type stars using KVN

  • Yun, Youngjoo;Cho, Se-Hyung;Dodson, Richard;Rioja, Maria J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.35.2-35.2
    • /
    • 2015
  • We present the results of simultaneous observations of the H2O and SiO masers emitted from the circumstellar envelopes (CSEs) of the late-type stars. These observations have been carried out at the four frequency bands (K, Q, W and D bands) using KVN to apply the source frequency phase referencing (SFPR) analysis to the maser lines. We obtain the relative positions between the H2O and the SiO maser spots by using the SFPR method, which are very important to study the physical links between the inner and the outer parts of the CSEs of the late-type stars. The relative positions between the SiO maser spots of the different transitions are also obtained very accurately, which are very crucial to investigate the pumping mechanism of the SiO maser lines. From our results, the capability of the simultaneous multi-band observation of KVN is proved to be powerful to study the complicated physical environments of the CSEs and the stellar evolution of the late-type stars.

  • PDF

EVOLUTIONARY STATUS AND INTERNAL STRUCTURE OF μ CASSIOPEIAE

  • BACH, KIEHUNN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • We investigate physical properties of the nearby (∼ 7.5 pc) astrometric binary μ Cas in the context of standard evolutionary theory. Based on the spectroscopically determined relative abundances ([α/Fe] ≳ +0.4 dex, [Fe/H] ∼ −0.7 dex), all physical inputs such as opacities and equation of state are consistently generated. By combining recent spectroscopic analyses with the astrometric observations from the HIPPARCOS parallaxes and the CHARA array, the evolutionary model grids have been constructed. Through the statistical evaluation of the χ2-minimization among alternative models, we find a reliable evolutionary solution (MA, MB, tage) = (0.74 M, 0.19 M, 11 Gyr) which excellently satisfies observational constraints. In particular, we find that the helium abundance of μ Cas is comparable with the primordial helium contents (Yp ∼ 0.245). On the basis of the well-defined stellar parameters of the primary star, the internal structure and the p-mode frequencies have been estimated. From our seismic computation, μ Cas is expected to have a first order spacing ∆ν ∼ 169 μHz. The ultimate goal of this study is to describe physical processes inside a low-mass star through a complete modelling from the spectroscopic observation to the evolutionary computation.

The Mid-IR Properties of Early Type Galaxies with Positive Optical Color Gradients

  • Park, Jintae;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2014
  • Radial color gradient of early type galaxies (ETGs) is a key tool for studying the evolution of these galaxies. In this work, we investigated whether ETGs having negative or positive color gradients show any distinguishable characteristics in the galaxy properties. We selected sample of 211 ETGs at 0.01 < z < 0.5 in the Spitzer FLS field, then we constructed u-R color gradients. We obtained the stellar mass, specific star formation rate and fluxes of emission lines of each ETG from MPA-JHU DR7 catalog. Spitzer IRAC and MIPS 24 micron data were used to detect dust emission from the ETGs. Preliminary result shows that less massive galaxies are likely to have positive color gradients, which is probably due to the ongoing star formation in the galaxy core. Almost all AGNs have negative color gradients. This probably is because AGNs are located in relatively massive galaxies with little ongoing star formation. There exists a marginal difference in the percentage of galaxies with PAH emission between ETGs having positive color gradient and negative color gradient. This also supports that ETGs with positive color gradient are galaxies having enhanced star formation.

  • PDF

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

Type Ibc Supernova Progenitors in Binary Systems: Observational Constraints on the Progenitor Candidate of the Supernova iPTF13bvn

  • Kim, Hyun-Jeong;Yoon, Sung-Chul;Koo, Bon-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2014
  • The progenitors of Type Ibc supernovae (SNe Ibc) have been believed to be massive Wolf-Rayet (WR) stars, formed either through stellar wind mass loss or Roche-lobe outflow in a binary system. But observations indicate that ordinary SNe Ibc have relatively low ejecta masses (~2 Msun), which is not compatible with the WR star scenario for SN Ibc progenitors. On the other hand, helium stars in binary systems which can be produced via mass transfer are also suggested as a possible candidate for SN Ibc progenitors. Binary star evolution models predict that SN Ibc progenitors having final masses of 3-7 Msun can be produced, but their observational properties are not well understood. In this study, we present the parameter study on the observational constraints of helium stars of 3-5 Msun in binary systems using evolutionary models and the atmospheric radiative transfer code CMFGEN. We present the predicted magnitudes and spectra of helium stars in optical bands for different wind velocity profiles and mass loss rates. We also present those observables of the progenitor binary system considering O-type companion stars. Based on the results, we discuss the expected observational properties of SN Ibc progenitors in binary systems. In particular, we discuss the constraints on the progenitor of the SN Ib iPTF13bvn of which progenitor candidate has been identified for the first time in pre-explosion images among SNe Ibc.

  • PDF

Magnetohydrodynamic Simulations of Barred Galaxies

  • Kim, Woong-Tae;Stone, James M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2012
  • We use two-dimensional high-resolution MHD simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks and leads to a smaller and more centrally distributed ring, resulting in the mass inflow rates larger, by more than two orders of magnitude, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms have a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.

  • PDF

Outflow Kinematics manifested by the Hα line : Gas outflows in Type 2 AGNs

  • Kang, Daeun;Woo, Jong-Hak;Bae, Hyun-jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2017
  • Energetic ionized gas outflows driven by active galactic nuclei (AGN) have been studied as a key phenomenon related to AGN feedback. To probe the kinematics of the gas in the narrow line region, [O III] ${\lambda}5007$ has been utilized in a number of studies, showing non-virial kinematic properties due to AGN outflows. We statistically investigate whether the $H{\alpha}$ emission line is influenced by AGN driven outflows, by measuring the kinematic properties based on the $H{\alpha}$ line profile, and by comparing them with those of [O III]. Using the spatially integrated spectra of ~37,000 Type 2 AGNs at z < 0.3 selected from the SDSS DR7, we find a non-linear correlation between $H{\alpha}$ velocity dispersion and stellar velocity dispersion, which reveals the presence of the non-gravitational component, especially for AGNs with a wing component in $H{\alpha}$. The large $H{\alpha}$ velocity dispersion and velocity shift of luminous AGNs are clear evidence of AGN outflow impacts on $H{\alpha}$ emitting gas, while relatively smaller kinematic properties compared to those of [O III] imply that the observed outflow effect on the $H{\alpha}$ line is weaker than the case of [O III].

  • PDF