Browse > Article
http://dx.doi.org/10.5303/JKAS.2015.48.3.165

EVOLUTIONARY STATUS AND INTERNAL STRUCTURE OF μ CASSIOPEIAE  

BACH, KIEHUNN (Department of Astronomy, Yonsei University)
Publication Information
Journal of The Korean Astronomical Society / v.48, no.3, 2015 , pp. 165-175 More about this Journal
Abstract
We investigate physical properties of the nearby (∼ 7.5 pc) astrometric binary μ Cas in the context of standard evolutionary theory. Based on the spectroscopically determined relative abundances ([α/Fe] ≳ +0.4 dex, [Fe/H] ∼ −0.7 dex), all physical inputs such as opacities and equation of state are consistently generated. By combining recent spectroscopic analyses with the astrometric observations from the HIPPARCOS parallaxes and the CHARA array, the evolutionary model grids have been constructed. Through the statistical evaluation of the χ2-minimization among alternative models, we find a reliable evolutionary solution (MA, MB, tage) = (0.74 M, 0.19 M, 11 Gyr) which excellently satisfies observational constraints. In particular, we find that the helium abundance of μ Cas is comparable with the primordial helium contents (Yp ∼ 0.245). On the basis of the well-defined stellar parameters of the primary star, the internal structure and the p-mode frequencies have been estimated. From our seismic computation, μ Cas is expected to have a first order spacing ∆ν ∼ 169 μHz. The ultimate goal of this study is to describe physical processes inside a low-mass star through a complete modelling from the spectroscopic observation to the evolutionary computation.
Keywords
stars: individual: μCas; fundamental parameters; evolution; interiors; atmospheres; asteroseismology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nissen, P. E., Hoeg, E., & Schuster, W. J. 1997, Surface Gravities of Metal-Poor Stars Derived from HIPPARCOS Parallaxes, in Proc. of the ESA Symp., HIPPARCOS Venice 97, ed. B. Battrick (ESA SP-402; Noordwijk: ESA), 225
2 Pagel, B. E. J. 2009, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge: Cambridge University Press)
3 Peebles, P. J. E. 1966 Primordial Helium Abundance and the Primordial Fireball. II, ApJ, 146, 542   DOI
4 Peimbert, M., Luridiana, V., & Peimbert, A. 2007, Revised Primordial Helium Abundance Based on New Atomic Data, ApJ, 666, 636   DOI
5 Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, Elemental Abundance Survey of the Galactic Thick Disc, MNRAS, 367, 1329   DOI
6 Ribas, I., Jordi, C., Torra, J., & Giménez, Á. 2000, Chemical Composition of Eclipsing Binaries: A New Approach to the Helium-to-Metal Enrichment Ratio, MNRAS, 313, 99   DOI
7 Russell, J. L., & Gatewood, G. D. 1984, The Parallax and Astrometric Orbit of µ Cassiopeiae, PASP, 96, 429   DOI
8 Ségransan, D., Kervella, P., Forveille, T., & Queloz, D. 2003, First Radius Measurements of Very Low Mass Stars with the VLTI, A&A, 397L, 5S
9 Steigman, G. 2007, Primordial Nucleosynthesis in the Precision Cosmology Era, ARNPS, 57, 463
10 Stein, R. F., & Nordlund, Å. 1989, Topology of Convection Beneath the Solar Surface, ApJ, 342, 95   DOI
11 Takeda, Y., & Honda, S. 2005, Photospheric CNO Abundances of Solar-Type Stars, PASJ, 57, 65   DOI
12 McCarthy, D. W. Jr., Hancock, T., Freeman, J., et al. 1993, Infrared imaging of µ CAS B using rapid image motion compensation, AJ, 105, 652   DOI
13 Lebreton, Y., Perrin, M.-N., Cayrel, R., Baglin, A., & Fernandes, J. 1999, The HIPPARCOS HR Diagram of Nearby Stars in the Metallicity Range: −1.0 < [Fe/H] < 0.3. A New Constraint on the Theory of Stellar Interiors and Model Atmospheres, A&A, 350, 587
14 Lippincott, S. L., & Wyckoff, S. 1964, Parallax and Orbital Motion of the Astrometric Binary µ Cassiopeiae from Photographs Taken with the 24-inch Sproul Refractor, AJ, 69, 471   DOI
15 Lippincott, S. L. 1981, Astrometric Analysis of the Unresolved Binary µ Cassiopeiae from Photographs Taken with the Sproul 61 Centimeter Refractor, ApJ, 248, 1053   DOI
16 Meléndez, J. and Barbuy, B., & Spite, F. 2001, Oxygen Abundances in Metal-poor Stars(−2.2 < [Fe/H] < −1.2) from Infrared OH Lines, ApJ, 556, 858   DOI
17 Mihalas, D. 1978, Stellar Atmospheres 2nd edn. (San Francisco: Freeman and Co.)
18 Mishenina, T. V., Kovtyukh, V. V., Soubiran, C., Travaglio, C., & Busso, M. 2002, Abundances of Cu and Zn in Metal-Poor Stars: Clues for Galaxy Evolution, A&A, 396, 189
19 Mishenina, T. V., Soubiran, C., Kovtyukh, V. V., & Korotin, S. A. 2004, On the Correlation of Elemental Abundances with Kinematics among Galactic Disk Stars, A&A, 418, 551
20 Mishenina, T. V., Pignatari, M., Korotin, S. A., et al. 2013, Abundances of Neutron-Capture Elements in Stars of the Galactic Disk Substructures, A&A, 552A, 128
21 Hearnshaw, J. B. 1974, Carbon and Iron Abundances for Thirty F and G Type Stars, A&A, 34, 263
22 Morel, P., Provost, J., Lebreton, Y., Thévenin, F., & Berthomieu, G. 2000, Calibrations of α Centauri A & B, A&A, 363, 675
23 Ibukiyama, A., & Arimoto, N. 2002, HIPPARCOS Age-Metallicity Relation of the Solar Neighbourhood Disc Stars, A&A, 394, 927
24 Haywood, J. W., Hegyi, D. J., & Gudehus, D. H., 1992, A Measurement of the Primordial Helium Abundance Using µ Cassiopeiae, ApJ, 392, 172   DOI
25 Hopf, E. 1930, Remarks on the Schwarzschild-Milne Model of the Outer Layers of a Star, MNRAS, 90, 287   DOI
26 Iglesias, C. A., & Rogers, F. J. 1996, Updated Opal Opacities, ApJ, 464, 943   DOI
27 Israelian, G., García López, R. J., & Rebolo, R. 1998, Oxygen Abundances in Unevolved Metal-poor Stars from Near-Ultraviolet OH Lines, ApJ, 507, 805   DOI
28 Izotov, Y. I., & Thuan, T. X. 2010 The Primordial Abundance of 4He: Evidence for Non-Standard Big Bang Nucleosynthesis, ApJ, 710, 67   DOI
29 Kim, K.-M., Jang, B.-H., Han, I., Jang, J. G., et al. 2002, Design and Manufacturing of the Cassegrain Interface Module of the BOAO Echelle Spectrograph, JKAS, 35, 221
30 Kim, Y.-C. 1999, Standard Stellar Models; α Cen A and B, JKAS, 32, 119
31 Lane, B. F., Boden, A. F., & Kulkarni, S. R. 2001, Interferometric Measurement of the Angular Sizes of Dwarf Stars in the Spectral Range K3-M4, ApJ, 551, 81   DOI
32 Fernandes, J., Lebreton, Y., Baglin, A., & Morel, P. 1998, Fundamental Stellar Parameters for Nearby Visual Binary Stars : η Cas, XI Boo, 70 OPH and 85 Peg. Helium Abundance, Age and Mixing Length Parameter for Low Mass Stars, A&A, 338, 455
33 Lastennet, E., Valls-Gabaud, D., Lejeune, Th., & Oblak, E. 1999, Consequences of HIPPARCOS Parallaxes for Stellar Evolutionary Models. Three Hyades binaries: V 818 Tauri, 51 Tauri, and θ(2)Tauri, A&A, 349, 485
34 Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, Low-Temperature Opacities, ApJ, 623, 585   DOI
35 Fuhrmann, K. 1998, Nearby Stars of the Galactic Disk and Halo, A&A, 338, 161
36 Fernandes, J., Morel, P., & Lebreton, Y. 2002, A Calibration of the 85 Peg Binary System, A&A, 392, 529
37 Fuhrmann, K. 1998, Surface Gravities of Very Metal-Poor Stars from HIPPARCOS Parallaxes, A&A, 330, 626
38 Fulbright, J. P. 2000, Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis, AJ, 120, 1841   DOI
39 Freytag, B., Ludwig, H.-G., & Steffen, M. 1996 Hydrodynamical Models of Stellar Convection. The Role of Overshoot in DA White Dwarfs, A-Type Stars, and the Sun, A&A, 313, 497
40 Gamow, G. 1948, The Origin of Elements and the Separation of Galaxies, Phys. Rev., 74, 505
41 Gough, D. O., 1986, Asymptotic Sound-Speed Inversions, ASIC, 169, 125
42 Grevesse, N., & Sauval, A. J. 1998, Standard Solar Composition, SSRv, 85, 161
43 Demarque, P., Guenther, D. B., & van Altena, W. F. 1986, The Case of Alpha Centauri - Mass, Age and P-Mode Oscillation Spectrum, ApJ, 300, 773   DOI
44 Guenther, D. B., Demarque, P., Kim, Y.-C., & Pinsonneault, M. H. 1992, Standard Solar Model, ApJ, 387, 372   DOI
45 Guenther, D. B. 1994, Nonadiabatic Nonradial p-mode Frequencies of the Standard Solar Model, with and without Helium Diffusion, ApJ, 422, 400   DOI
46 Chen, Y., Girardi, L., Bressan, A., Marigo, P., Barbieri, M., & Kong, X./ 2014, Improving PARSEC Models for Very Low Mass Stars, MNRAS, 444, 2525   DOI
47 Chieffi, A., Straniero, O., & Salaris, M. 1995, Calibration of Stellar Models, ApJ, 445, 39   DOI
48 Cohen, J. G. 1968, Analysis of F and G Subdwarfs. III. an Abundance Analysis of the Subdwarf µ Cassiopeia, ApJ, 154, 179   DOI
49 Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure (NewYork: Gordon & Breach)
50 Dennis, T. R. 1965, On the Possibility of Determining the Helium Content of the Subdwarf µ Cassiopeiae, PASP, 77, 283   DOI
51 Drummond, J. D., Christou, J. C., & Fugate, R. Q. 1995, Full Adaptive Optics Images of ADS 9731 and µ Cassiopeiae: Orbits and Masses, ApJ, 450, 380   DOI
52 Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, Evidence from the motions of old stars that the Galaxy collapsed, ApJ, 136, 748   DOI
53 Catchpole, R. M., Pagel, B. E. J., & Powell, A. L. T. 1967, Chemical Composition of the Mild Subdwarf µ Cassiopeiae, MNRAS, 136, 403   DOI
54 Bach, K., & Kang, W. 2015, Determination of Physical Dimensions of µ Cas, ASPC, in press
55 Chan, K. L., & Sofia, S. 1987, Validity Tests of the Mixing-Length Theory of Deep Convection, Sci., 235, 465   DOI
56 Feibelman, W. A. 1976, The Astrometric Binary MU Cassiopeiae - Photographically Almost Resolved, ApJ, 209, 497   DOI
57 Feltzing, S., & Gustafsson, B. 1998, Abundances in Metal-Rich Stars. Detailed Abundance Analysis of 47 G and K Dwarf Stars with [Me/H] > 0.10 dex, A&AS, 129, 237
58 Berger, D. H., Gies, D. R., McAlister, H. A., et al. 2006, First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars, ApJ, 644, 475   DOI
59 Bahcall, J. N., & Loeb, A. 1990, Element Diffusion in Stellar Interiors, ApJ, 360, 267   DOI
60 Basu, S., & Antia, H. M. 2008, Helioseismology and Solar Abundances, PhR, 457, 217
61 Bensby, T., & Feltzing, S. 2006, The Origin and Chemical Evolution of Carbon in the Galactic Thin and Thick Discs, MNRAS, 367, 1181   DOI
62 Böhm-Vitense, E. 1958, Über die Wasserstoffkonvektionszone in Sternen Verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen, Z. Astrophys., 46, 108
63 Boyajian, T. S., McAlister, H. A., Baines, E. K., et al. 2008, Angular Diameters of the G Subdwarf µ Cassiopeiae A and the K Dwarfs σ Draconis and HR 511 from Interferometric Measurements with the CHARA Array, ApJ, 683, 424   DOI
64 Caloi, V., Cardini, D., D’Antona, F., Badiali, M., Emanuele, A., & Mazzitelli, I. 1999, Kinematics and Age of Stellar Populations in the Solar Neighbourhood from Hipparcos Data, A&A, 351, 925
65 Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, The Chemical Composition of the Sun, ARA&A, 47, 481
66 Bach, K., Lee, J., Demarque, P., & Kim, Y.-C. 2009, Evolutionary Status of 85 Pegasi, ApJ, 703, 362   DOI
67 Bach, K., & Kim, Y.-C. 2012, Hydrodynamical Comparison Test of Solar Models, Astron. Nachr., 333, 934   DOI
68 Cassisi, S., Salaris, M., & Irwin, A. W. 2003, The Initial Helium Content of Galactic Globular Cluster Stars from the R-Parameter: Comparison with the Cosmic Microwave Background Constraint, ApJ, 588, 862   DOI
69 Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology, Astronomy and Astrophysics Library (Berlin: Springer)
70 Alonso, A., Arribas, S., & Martínez-Roger, C. 1999, The Effective Temperature Scale of Giant Stars (F0-K5). II. Empirical Calibration of Teff versus Colours and [Fe/H], A&AS, 140, 261
71 Asplund, M., Grevesse, N., & Sauval, A. J. 2005, The Solar Chemical Composition, ASPC, 336, 25
72 Wickes, W. C. 1975, Interferometric Measurements of Binary Stars, AJ, 80, 655   DOI
73 Wagman, N. E., Daniel, Z., & Crissman, B. G. 1963, Photographic Determinations of the Parallaxes of 60 stars with the Thaw Refractor, AJ, 68, 352   DOI
74 Weinberg, S. 2008, Cosmology (Oxford: Oxford University Press)
75 Wickes, W. C., & Dicke, R. H. 1974, Achromatic Double-star interferometry, AJ, 79, 1433   DOI
76 Worek, T. F., & Beardsley, W. R. 1977, A Spectroscopic Orbit for the Subdwarf Binary µ Cassiopeiae, ApJ, 217, 134   DOI
77 Yildiz, M. 2007, Models of α Centauri A and B With and Without Seismic Constraints: Time Dependence of the Mixing-Length Parameter, MNRAS, 374, 1264   DOI
78 Zhao, G., & Gehren, T. 2000, Non-LTE Analysis of Neutral Magnesium in Cool Stars, A&A, 362, 1077
79 Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å, & Asplund, M. 2014, Improvements to stellar structure models, based on a grid of 3D convection simulations - I. T(tau) relations, MNRAS, 442, 805   DOI
80 Tanner, J. D., Basu, S., & Demarque, P. 2014, The Effect of Metallicity-dependent T-tau Relations on Calibrated Stellar Models, ApJ, 785, 13   DOI
81 Thévenin, F., & Idiart, T. P. 1999, Stellar Iron Abundances: Non-LTE Effects, ApJ, 521, 753   DOI
82 Thoul, A. A., Bahcall, J. N., & Loeb, A,. 1994 Element Diffusion in the Solar Interior, ApJ, 421, 828   DOI
83 Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å, & Asplund, M. 2014, Improvements to stellar structure models, based on a grid of 3D convection simulations - II. Calibrating the mixing-length formulation, MNRAS, 445, 4366   DOI
84 Vandenberg, D. A., & Bridges, T. J. 1984, Theoretical Zero-age Main Sequences Applied to the Pleiades, Praesepe, and Hyades Star Clusters, ApJ, 278, 679   DOI
85 Vandenberg, D. A., & Hrivnak, B. J. 1985, The Age and Helium Content of the Eclipsing Binary AI Phoenicis, ApJ, 291, 270   DOI
86 Takeda, Y. 2007, Fundamental Parameters and Elemental Abundances of 160 F-G-K Stars Based on OAO Spectrum Database, PASJ, 59, 335   DOI
87 Takeda, Y., & Takada-Hidai, M. 2011, Exploring the [S/Fe] Behavior of Metal-Poor Stars with the Si 1.046 µm Lines, PASJ, 63S, 537
88 Villanova, S., Piotto, G., & Gratton, R. G. 2009, The Helium Content of Globular Clusters: Light Element Abundance Correlations and HB Morphology. I. NGC 6752, A&A, 499, 755
89 Wagman, N. E. 1961, Reports of Observatories, AJ, 66, 433   DOI
90 Peimbert, M., & Torres-Peimbert, S. 1999, Peebles’s Analysis of the Primordial Fireball, ApJ Centennial Issue, 525, 1143