• 제목/요약/키워드: stein equation

검색결과 4건 처리시간 0.017초

Harltley 함수를 이용한 선형시스템의 상태해석에 관한 연구 (Study for State Analysis of Linear Systems by using Hartley Functions)

  • 김범수;민치현
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.806-811
    • /
    • 2012
  • In this paper Hartley functions are used to approximate the solutions of continuous time linear dynamical system. The Hartley function and its integral operational matrix are first presented, an efficient algorithm to solve the Stein equation is proposed. The algorithm is based on the compound matrix and the inverse of sum of matrices. Using the structure of the Hartley's integral operational matrix, the full order Stein equation should be solved in terms of the solutions of pure algebraic matrix equations, which reduces the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.

Haar 웨이블릿을 이용한 선형시스템의 상태해석에 관한 연구 (Study for State Analysis of Linear Systems using Haar Wavelet)

  • 김범수;심일주
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.977-982
    • /
    • 2008
  • In this paper Haar functions are developed to approximate the solutions of continuous time linear system. Properties of Haar functions are first presented, and an explicit expression for the inverse of the Haar operational matrix is presented. Using the inverse of the Haar operational matrix the full order Stein equation should be solved in terms of the solutions of pure algebraic matrix equations, which reduces the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.

웨이블릿 기반 극점 배치 기법에 의한 선형 시스템 해석 (Linear system analysis via wavelet-based pole assignment)

  • 김범수;심일주
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1434-1439
    • /
    • 2008
  • Numerical methods for solving the state feedback control problem of linear time invariant system are presented in this paper. The methods are based on Haar wavelet approximation. The properties of Haar wavelet are first presented. The operational matrix of integration and its inverse matrix are then utilized to reduce the state feedback control problem to the solution of algebraic matrix equations. The proposed methods reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity and applicability of the proposed methods.