# A PROOF OF THE CONJECTURE OF MAZUR-RUBIN-STEIN 

Hae-Sang Sun

Abstract. We present a concise proof of the conjecture of Mazur-RubinStein on the distribution of modular symbols.

## 1. Introduction

Let $f$ be a cusp form of a level $N$ and weight 2 . For $r \in \mathbb{Q} \cap(0,1)$, one defines period integrals

$$
m_{ \pm}(r)=\int_{r}^{i \infty} 2 \pi i f(z) d z \pm \int_{-r}^{i \infty} 2 \pi i f(z) d z
$$

Developing a conjecture on the Diophantine stability, Mazur and Rubin [6] establish heuristics on the distribution of period integrals $m_{ \pm}(r)$ for a new form and propose several conjectures:
(1) The random variable $m_{ \pm}$on the rationals with the fixed denominator $M$, is asymptotically Gaussian.
(2) For a divisor $g$ of $N$, there exist constants $C_{f}$ and $D_{f, g}$ called the variance slope and the variance shift, respectively, such that the difference between variance of $m_{+}$and $C_{f} \log M$ converges to $D_{f, g}$ when $g$ is the G.C.D. of $M$ and $N$.
(3) The integer-valued random variable $m_{ \pm} / \Omega_{f}^{ \pm}$for suitable periods $\Omega_{f}^{ \pm}$is equi-distributed modulo $p$.
Petridis-Risager [7] prove average versions of (1) and (2) using a theory of Eisenstein series whose coefficients are the moments of period integrals. Even more, they give explicit expressions for the variance slopes $C_{f}$ and the shifts $D_{f, g}$ in terms of special values of the symmetric square $L$-function of $f$. LeeSun [5] also presents a proof of the average version of the conjectures including the statement (3) by studying the dynamics of continued fractions. Using a

[^0]theory of shifted convolution, Blomer et al. [1] obtain the second moment of $m_{ \pm}$, i.e., the statement (2).

The above conjecture of Mazur-Rubin implies that the period integrals are distributed with a certain regularity. Therefore, Mazur, Rubin, and Stein [6] propose another conjecture:

Conjecture A (Mazur-Rubin-Stein). For $0<x \leq 1$, one has

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{r \leq M x} m_{ \pm}\left(\frac{r}{M}\right)=\sum_{n=1}^{\infty} \frac{a_{n}(f) e_{ \pm}(2 n x)}{n^{2}}
$$

where $e_{ \pm}$is given by

$$
e_{ \pm}(x)=\int_{0}^{x} \exp (2 \pi i t) \pm \exp (-2 \pi i t) d t
$$

In this paper, we prove:
Theorem 1.1. Let $N$ be square-free. For any $\epsilon>0$ and $0 \leq x \leq 1$, we have

$$
\begin{equation*}
\frac{1}{M} \sum_{1 \leq r \leq M x} m_{ \pm}\left(\frac{r}{M}\right)=\sum_{n=1}^{\infty} \frac{a_{n}(f) e_{ \pm}(2 n x)}{n^{2}}+O_{f, \epsilon}\left(\frac{N^{1 / 2+\epsilon}}{M^{1 / 4-\epsilon}}\right) \tag{1.1}
\end{equation*}
$$

where the implicit constant in the error term depends only on $\epsilon$ and $f$; and independent of $f$ if $f$ is a newform.

The condition on $N$ originates from the functional equation of the $L$-functions. During preparation of the manuscript, N. Diamantis informed us that a proof of Theorem 1.1 even for a general level is obtained by Diamantis-Hoffstein-Kiral-Lee [2] using the functional equation for general levels. Let us remark that even though the level is limited, a virtue of our paper is the brevity of the proof. The role of smooth approximation of bump functions in Diamantis-Hoffstein-Kiral-Lee [2], is played by Lemma 3.1 in present paper.
Acknowledgements. The author is grateful to Ashay Burungale for bring his attention to the conjecture of Mazur-Rubin-Stein. He is also grateful to Barry Mazur for clarifying his understanding on the conjectures of Mazur-Rubin. The author would like to thank Nikolaos Diamantis for kindly sending us a preprint about the Mazur-Rubin-Stein conjecture, a part of which inspires us to improve the error in the main result. He is grateful to anonymous referee for providing valuable suggestions to improve the manuscript.

## 2. Approximate functional equations of additive twists

This section is a summary of Kim-Sun [4, Section 2].
Let $f \in S_{2 k}(N, \delta)$ for a Nebentypus $\delta$. Let $W_{N}=\left(\begin{array}{cc}0 \\ N & -1 \\ 0\end{array}\right)$ be the Fricke involution. Note that $f \mid W_{N} \in S_{2 k}(N, \bar{\delta})$. For $x \in \mathbb{Q}$, let us set

$$
\mathrm{t}(x)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

Let $\mathbf{e}(x)=\exp (2 \pi i x)$. For $f(z)=\sum_{n \geq 1} a_{n} \mathbf{e}(n z)$ and $s \in \mathbb{C}$ with $\Re(s)>$ $k+1 / 2$, the partial $L$-function is given by

$$
L(s, f, x):=\sum_{n \geq 1} \frac{a_{n}(f) \mathbf{e}(n x)}{n^{s}} .
$$

It can be easily verified that

$$
\begin{equation*}
L(1, f, x)=-2 \pi i \int_{x}^{i \infty} f(z) d z \tag{2.1}
\end{equation*}
$$

Let $q>0$ be an integer that is not necessarily prime to $N$. Let $Q$ be the least common multiple of $N$ and $q^{2}$. Let us set $d=\operatorname{gcd}\left(q^{2}, N\right), N_{0}=\frac{N}{d}$ and assume that

$$
\operatorname{gcd}\left(N_{0}, d\right)=1
$$

Hence $Q=\frac{q^{2} N}{d}$. Let $\delta$ be decomposed as

$$
\delta=\delta_{1} \delta_{2}
$$

corresponding to $(\mathbb{Z} / N \mathbb{Z})^{\times} \simeq\left(\mathbb{Z} / N_{0} \mathbb{Z}\right)^{\times} \times(\mathbb{Z} / d \mathbb{Z})^{\times}$. For $x, y \in \mathbb{Z}$ with $x d-$ $\frac{N}{d} y=1$, let us set

$$
\mathrm{W}_{d}=\left(\begin{array}{cc}
d x & y \\
N & d
\end{array}\right)
$$

The matrix $\mathrm{W}_{d}$ is a normalizer of $\Gamma_{0}(N)$. Let us set

$$
\mathrm{W}_{N, d}=\mathrm{W}_{N} \mathrm{~W}_{d}
$$

Then $\mathrm{W}_{N, d}$ commutes with the Hecke operators $\mathrm{T}(n)$ when $\operatorname{gcd}(n, N)=1$ and $f \mid \mathrm{W}_{N, d} \in S_{2 k}\left(N, \bar{\delta}_{1} \delta_{2}\right)$. Furthermore, we have $f \mid \mathrm{W}_{N, d}^{2}=\delta\left(d x-N_{0} y^{2}\right) f=$ $\bar{\delta}_{2}\left(-N_{0}\right) f$. Note that if $f$ is a newform, then $f \mid \mathrm{W}_{N, d}=\zeta f$ for a $\zeta \in \mathbb{C}$ with $\zeta^{2}=\bar{\delta}_{2}\left(-N_{0}\right)$.

Let $\Phi$ be an infinitely differentiable function on $(0, \infty)$ with compact support and $\int_{0}^{\infty} \Phi(y) \frac{d y}{y}=1$, and set $\kappa(t)=\int_{0}^{\infty} \Phi(y) y^{t} \frac{d y}{y}$. Let us set

$$
\begin{aligned}
& F_{1, s}(x)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \kappa(t) \Gamma(s+t) x^{-t} \frac{d t}{t} \text { and } \\
& F_{2, s}(x)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \kappa(-t) \Gamma(s+t) x^{-t} \frac{d t}{t}
\end{aligned}
$$

With those settings, we have the asymptotics of $F_{i, s}$ and the approximate functional equation of which proofs are given in Kim-Sun [4, (2.5), (2.6), (2.7)]:

Proposition 2.1. (1) For each $i$, we have

$$
\begin{align*}
& F_{i, s}(x)=O\left(\Gamma(\Re(s)+j) x^{-j}\right) \text { for all } j \geq 1 \text { as } x \rightarrow \infty  \tag{2.2}\\
& F_{i, s}(x)=\Gamma(s)+O\left(\Gamma\left(\Re(s)-\frac{1}{2}\right) x^{\frac{1}{2}}\right) \text { as } x \rightarrow 0 \tag{2.3}
\end{align*}
$$

(2) For an integer $a>0$ with $\operatorname{gcd}(a, q)=1$, choose an integer $u>0$ such that $u \equiv-\left(a N_{0}\right)^{-1}\left(\bmod \frac{q^{2}}{d}\right)$. Then $L\left(s, f, \frac{a}{q}\right)$ satisfies the approximate functional equation

$$
\begin{align*}
& \Gamma(s) L\left(s, f, \frac{a}{q}\right)  \tag{2.4}\\
= & \sum_{n=1}^{\infty} \frac{a_{n}(f) \mathbf{e}\left(\frac{a n}{q}\right)}{n^{s}} F_{1, s}\left(\frac{n}{y}\right) \\
& +i^{2 k} \delta_{1}(q) \delta_{2}\left(N_{0}\right)\left(\frac{Q}{4 \pi^{2}}\right)^{k-s} \sum_{n=1}^{\infty} \frac{a_{n}\left(f \mid \mathrm{W}_{N, d}\right) \mathbf{e}\left(\frac{u n}{q}\right) \delta_{2}(u)}{n^{2 k-s}} F_{2,2 k-s}\left(\frac{4 \pi^{2} n y}{Q}\right),
\end{align*}
$$

where $y>0$ is a real number.

## 3. Proof of Theorem 1.1

Let $f$ be a cusp form of weight 2 and a square-free level $N$ with a Nebentypus $\delta$. Note that we have

$$
e_{+}(x)=\frac{\sin (2 \pi x)}{\pi} \text { and } e_{-}(x)=\frac{i(1-\cos (2 \pi x))}{\pi} .
$$

For integers $n>0$ and $M \geq 2$ and $0<x \leq 1$, let us set

$$
U(x, M ; n):=\frac{1}{M} \sum_{r=1}^{M x}\left\{\mathbf{e}\left(\frac{r n}{M}\right) \pm \mathbf{e}\left(\frac{-r n}{M}\right)\right\}
$$

We need an estimate on the sum.
Lemma 3.1. Let $M \geq 2$ and $n \geq 1$ be integers. Let $[n]$ be the least positive residue of $n$ modulo $M$ and assume that $n$ is not divisible by $M$. Then for a real $x$ with $0 \leq x \leq 1$ we have

$$
U(x, M ; n)=\frac{e_{ \pm}([n] x)}{[n]}+O\left(\frac{1}{M}\right) .
$$

Proof. We may assume that $n<M$. Since $U(x, M ; n)$ is a geometric series, it is equal to

$$
\frac{\mathbf{e}\left(\frac{n}{M}\right)\left(\mathbf{e}\left(\frac{\llcorner M x\rfloor n}{M}\right)-1\right) \mp\left(\mathbf{e}\left(-\frac{\lfloor M x\rfloor n}{M}\right)-1\right)}{M\left(\mathbf{e}\left(\frac{n}{M}\right)-1\right)} .
$$

Here note that $[n]=n$ as $n<M$. Since $\lfloor M x\rfloor / M=x-\theta / M$ with $0 \leq \theta<1$, the last expression is equal to

$$
\frac{(\mathbf{e}(x n)-1) \mp(\mathbf{e}(-x n)-1)+O\left(\frac{n}{M}\right)}{2 \pi i n+O\left(\frac{n^{2}}{M}\right)}+O\left(\frac{1}{M}\right) .
$$

Hence we finish the proof.

We need an estimate on an exponential sum that can be obtained from one on the Kloosterman sum (see Heath-Brown [3]):

Proposition 3.2. Let $I$ be a sub-interval of $[0,1)$. Let $a$, $b$, and $M \geq 2$ be integers. Then one has

$$
\sum_{\frac{r}{M} \in I}^{\prime} \mathbf{e}\left(\frac{a r+b r^{\prime}}{M}\right) \ll \operatorname{gcd}(a, b, M)^{1 / 2} M^{1 / 2+\epsilon}
$$

where $\Sigma^{\prime}$ is the sum over the integers $1 \leq r \leq M$ with $\operatorname{gcd}(r, M)=1$.
For an integer $M$ and Dirichlet character $\delta_{2}$ of modulus $N / \operatorname{gcd}\left(M^{2}, N\right)$, let us set

$$
V(x, M ; n)=\sum_{\substack{r \leq M x \\ \operatorname{gcd}(r, M)=1}} \delta_{2}\left(r^{\prime}\right)\left\{\mathbf{e}\left(\frac{r^{\prime} n}{M}\right) \pm \mathbf{e}\left(\frac{-r^{\prime} n}{M}\right)\right\}
$$

where $r^{\prime}$ is the inverse of $r$ modulo $M$. We also need:
Lemma 3.3. For two integers $M \geq 2, n \geq 1$ and a real $0 \leq x \leq 1$, we have

$$
V(x, M ; n) \ll N^{1 / 2} \operatorname{gcd}(n, M)^{1 / 2} M^{1 / 2+\epsilon}
$$

Proof. The case of $M \mid n$ is obvious. Let us assume $M \nmid n$ and set $N_{0}=$ $N / \operatorname{gcd}\left(M^{2}, N\right), M=N_{0} M_{0}$. Since $\delta_{2}$ is a periodic function of a period $N_{0}$, it can be written as

$$
\delta_{2}(s)=\sum_{j=1}^{N_{0}} c_{j} \mathbf{e}\left(\frac{s j M_{0}}{M}\right)
$$

form some $c_{j}$ with $\sum_{j=1}^{N_{0}}\left|c_{j}\right|^{2} \leq 1$. Then, we obtain

$$
V(x, M ; n)=\sum_{j=1}^{N_{0}} c_{j} \sum_{\substack{r \leq M x \\ \operatorname{gcd}(r, M)=1}}\left\{\mathbf{e}\left(\frac{r^{\prime}\left(n+j M_{0}\right)}{M}\right) \pm \mathbf{e}\left(\frac{-r^{\prime}\left(n-j M_{0}\right)}{M}\right)\right\}
$$

From Cauchy-Schwartz inequality and Proposition 3.2, we finish the proof.
Weil and Deligne have shown that for a cusp form $f$ and $\epsilon>0$, there exists a constant $b_{f}>0$ dependent only on $f$ such that

$$
\begin{equation*}
a_{n}(f) \ll_{\epsilon} b_{f} n^{1 / 2+\epsilon} \tag{3.1}
\end{equation*}
$$

Note that if $f$ is a newform, then $b_{f}$ is independent of $f$ and can be chosen as $b_{f}=1$.

We are ready to give:
Proof of Theorem 1.1. First note that

$$
\begin{equation*}
\sum_{r \leq M x} m_{ \pm}\left(\frac{r}{M}\right)=\sum_{g \mid M} \sum_{\substack{s \leq g x \\ \operatorname{gcd}(g, s)=1}} m_{ \pm}\left(\frac{s}{g}\right) \tag{3.2}
\end{equation*}
$$

From (2.1), (2.4), and (3.2), we have

$$
\begin{align*}
& \frac{1}{M} \sum_{r=1}^{M x} m_{ \pm}\left(\frac{r}{M}\right)  \tag{3.3}\\
= & \sum_{n=1}^{\infty} \frac{a_{n}(f) U(x, M ; n)}{n} F_{1,1}\left(\frac{n}{y}\right) \\
& +\frac{i^{2 k}}{M} \sum_{g \mid M} \delta_{1}(g) \delta_{2}(N / e) \sum_{n=1}^{\infty} \frac{a_{n}\left(f \mid \mathrm{W}_{N, e}\right) V(x, g ; n)}{n} F_{2,1}\left(\frac{4 \pi^{2} n y}{N g^{2} / e}\right),
\end{align*}
$$

where $e=\operatorname{gcd}\left(g^{2}, N\right)$ and $\delta_{1}, \delta_{2}$ in the sum $\sum_{g \mid M}$ are the Dirichlet characters of moduli $N / e$ and $e$, respectively. Here note that $e$ and $N / e$ are relatively prime since $N$ is square-free. Let us rewrite (3.3) as

$$
S_{1}+\frac{1}{M} \sum_{g \mid M} \delta_{1}(g) \delta_{2}(N / e) S_{2}(g)
$$

First of all, consider the first sum $S_{1}$. We split it into two parts,

$$
S_{1}=S_{1, \leq y}+S_{1,>y},
$$

a sum over $n \leq y$ and one over $n>y$, respectively. Observe that by Lemma 3.1 and the estimate $F_{1,1}(x)=O(1)$, the sum over $n \leq y$ is equal to

$$
\sum_{\substack{M \nmid n \\ n \leq y}} \frac{a_{n}(f) e_{ \pm}([n] x)}{[n] n} F_{1,1}\left(\frac{n}{y}\right)+O\left(\frac{1}{M} \sum_{\substack{n \leq y \\ M \nmid n}} \frac{\left|a_{n}(f)\right|}{n}\right)+O\left(\sum_{\substack{n \leq y \\ M \mid n}} \frac{\left|a_{n}(f)\right|}{n}\right) .
$$

By (2.3) and the bound (3.1), this is equal to

$$
\begin{equation*}
\sum_{\substack{n \leq y \\ M \nmid n}} \frac{a_{n}(f) e_{ \pm}([n] x)}{[n] n}+O\left(b_{f} \sum_{\substack{n \leq y \\ M \nmid n}} \frac{n^{1 / 2+\epsilon}}{n[n]}\left(\frac{n}{y}\right)^{1 / 2}\right)+O\left(\frac{b_{f} y^{1 / 2+\epsilon}}{M}\right) \tag{3.4}
\end{equation*}
$$

Observe that for a real number $b>0$ and $y>M$, we obtain
$\sum_{\substack{n \leq y \\ M \nmid n}} \frac{n^{b}}{[n]}=\sum_{r=1}^{M-1} \frac{1}{r} \sum_{\substack{n \leq y \\ n \equiv r(M)}} n^{b} \ll \sum_{r=1}^{M-1} \frac{1}{r} \sum_{q<y / M}(M q+r)^{b} \ll(\log M) M^{b}\left(\frac{y}{M}\right)^{1+b}$.
Therefore, with $b=\epsilon$, the error terms of (3.4) are equal to $O\left(\frac{b_{f}(\log M) y^{1 / 2+\epsilon}}{M}\right)$.
Separating the first summand of (3.4) into three parts, namely (1) $n<M$, (2) $M<n<y$ with $M \nmid n$, and (3) $M<n<y$ with $M \mid n$, the first summand of (3.4) equals

$$
\sum_{n<M} \frac{a_{n}(f) e_{ \pm}(n x)}{n^{2}}+O\left(\sum_{\substack{M<n \leq y \\ M \nmid n}} \frac{b_{f}}{n^{1 / 2-\epsilon}[n]}\right)+O\left(\frac{b_{f} y^{1 / 2+\epsilon}}{M}\right)
$$

$$
=\sum_{n<M} \frac{a_{n}(f) e_{ \pm}(n x)}{n^{2}}+O\left(\frac{b_{f}(\log M) y^{1 / 2+\epsilon}}{M}\right) .
$$

Hence, finally, (3.4) is equal to

$$
S_{1, \leq y}=\sum_{n<M} \frac{a_{n}(f) e_{ \pm}(n x)}{n^{2}}+O\left(\frac{b_{f}(\log M) y^{1 / 2+\epsilon}}{M}\right)
$$

Note that the sum over $n>y$ in the first sum of (3.3) also can be calculated in a similar way but using (2.2) instead of (2.3). It is equal to

$$
S_{1,>y}=\sum_{n>y} \frac{a_{n}(f) U(M, x ; n)}{n} F_{1,1}\left(\frac{n}{y}\right)=O\left(\frac{b_{f} y^{1 / 2+\epsilon} \log M}{M}\right)
$$

Now let us consider the sum $S_{2}(g)$. We also divide it into two parts:

$$
S_{2}(g)=S_{2, \leq y}(g)+S_{2,>y}(g),
$$

a sum over $n \leq A g^{2} / y$ and one over $n>A g^{2} / y$, respectively for $A=N /\left(4 \pi^{2} e\right)$. By Lemma 3.3 and (2.3), we obtain $V(x, g ; n) \ll N^{1 / 2} \operatorname{gcd}(g, n)^{1 / 2} g^{1 / 2+\epsilon}$ and the sum over $n \leq A g^{2} / y$ is

$$
S_{2, \leq y}(g) \ll b_{f} N^{1 / 2} g^{1 / 2+\epsilon} \sum_{n \leq A g^{2} / y} \frac{\operatorname{gcd}(n, g)^{1 / 2}}{n^{1 / 2-\epsilon}} .
$$

The last sum is equal to

$$
\sum_{d \mid g} d^{\epsilon} \sum_{m \leq A g^{2} / d y, \operatorname{gcd}(m, g / d)=1} \frac{1}{m^{1 / 2-\epsilon}} \ll\left(\frac{A g^{2}}{y}\right)^{1 / 2+\epsilon} \sum_{d \mid g} \frac{1}{d^{1 / 2}}
$$

Since $\sum_{d \mid g} d^{-1 / 2} \ll g^{\epsilon}$, the sum $S_{2, \leq y}(g)$ is equal to

$$
S_{2, \leq y}(g)=O\left(\frac{N^{1 / 2} b_{f} A^{1 / 2+\epsilon} g^{3 / 2+3 \epsilon}}{y^{1 / 2+\epsilon}}\right)
$$

In a similar way as the last calculations together with (2.2), the sum over $n>A g^{2} / y$ is equal to

$$
S_{2,>y}(g)=O\left(\frac{N^{1 / 2} b_{f} A^{1 / 2+\epsilon} g^{3 / 2+3 \epsilon}}{y^{1 / 2+\epsilon}}\right) .
$$

Therefore, from the inequality $\sum_{g \mid M} g^{a} \ll M^{a+\epsilon}$ for $a>0$, we obtain

$$
\frac{1}{M} \sum_{g \mid M}\left|S_{2}(g)\right| \ll \frac{N^{1 / 2} b_{f}}{M} \sum_{g \mid M} \frac{A^{1 / 2+\epsilon} g^{3 / 2+3 \epsilon}}{y^{1 / 2+\epsilon}} \ll \frac{b_{f} N^{1+\epsilon} M^{1 / 2+4 \epsilon}}{y^{1 / 2+\epsilon}} .
$$

In total, setting

$$
y=N^{\frac{1+\epsilon}{1+2 \epsilon}} M^{\frac{3 / 2+3 \epsilon}{1+2 \epsilon}},
$$

we complete the proof with a new $\epsilon>0$.
Let $\mathbb{E}_{M}$ be the average on the rationals in $(0,1)$ with the denominator $M$.

Corollary 3.4. Let $N$ be square-free. For $\epsilon>0$, we have

$$
\mathbb{E}_{M}\left[m_{ \pm}\right]<_{f, \epsilon} N^{1 / 2+\epsilon} M^{-1 / 4+\epsilon}
$$

where the implicit constant in the error term is independent of $f$ if $f$ is a newform.
Proof. Let us set

$$
G^{ \pm}(f ; x)=\sum_{n=1}^{\infty} \frac{a_{n}(f) e_{ \pm}(n x)}{n^{2}} .
$$

From Möbius inversion formula, we obtain

$$
\phi(M) \mathbb{E}_{M}\left[m_{ \pm}\right]=\sum_{\substack{r=1 \\(r, M)=1}}^{M} m_{ \pm}\left(\frac{r}{M}\right)=\sum_{d \mid M} \mu\left(\frac{M}{d}\right) \sum_{s=1}^{d} m_{ \pm}\left(\frac{s}{d}\right) .
$$

By Theorem 1.1, this equals

$$
\sum_{d \mid M} \mu\left(\frac{M}{d}\right)\left[d G^{ \pm}(f ; 1)+O\left(\frac{b_{f} d N^{1 / 2+\epsilon}}{d^{1 / 4-\epsilon}}\right)\right]
$$

Since $\phi(M) \gg M / \log M, q^{3 / 4+\epsilon}+1 \ll_{\epsilon} q^{3 / 4+2 \epsilon}$, and

$$
\sum_{d \mid M}\left|\mu\left(\frac{M}{d}\right)\right| d^{3 / 4+\epsilon}=\prod_{\substack{q \mid M \\ q: p r i m e}}\left(1+q^{3 / 4+\epsilon}\right) \ll_{\epsilon} M^{3 / 4+2 \epsilon}
$$

we obtain the proof of the Corollary with a new $\epsilon>0$.

## References

[1] V. Blomer, É. Fouvry, E. Kowalski, P. Michel, D. Milićević, and W. Sawin, The second moment theory of families of L-functions, to appear in Memoirs of the AMS.
[2] N. Diamantis, J. Hoffstein, E. M. Kiral, and M. Lee, Additive twists and a conjecture by Mazur, Rubin and Stein, J. Number Theory 209 (2020), 1-36. https://doi.org/10. 1016/j.jnt.2019.11.016
[3] D. R. Heath-Brown, Arithmetic applications of Kloosterman sums, Nieuw Arch. Wiskd. (5) $\mathbf{1}$ (2000), no. 4, 38084 .
[4] M. Kim and H.-S. Sun, Modular symbols and modular L-values with cyclotomic twists, submitted.
[5] J. Lee and H.-S. Sun, Dynamics of continued fractions and distribution of modular symbols, submitted.
[6] B. Mazur, Relatively few rational points, Lecture note at Cal Tech.
[7] Y. N. Petridis and M. S. Risager, Arithmetic statistics of modular symbols, Invent. Math. 212 (2018), no. 3, 997-1053. https://doi.org/10.1007/s00222-017-0784-7

Hae-Sang Sun
Ulsan National Institute of Science and Technology
UlSan 44919, Korea
Email address: haesang@unist.ac.kr


[^0]:    Received February 19, 2020; Accepted March 25, 2020.
    2010 Mathematics Subject Classification. 11F67.
    Key words and phrases. Modular symbols, approximate functional equation.
    This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF2017R1A2B4012408).

