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A PROOF OF THE CONJECTURE OF

MAZUR-RUBIN-STEIN

Hae-Sang Sun

Abstract. We present a concise proof of the conjecture of Mazur-Rubin-

Stein on the distribution of modular symbols.

1. Introduction

Let f be a cusp form of a level N and weight 2. For r ∈ Q ∩ (0, 1), one
defines period integrals

m±(r) =

∫ i∞

r

2πif(z)dz ±
∫ i∞

−r
2πif(z)dz.

Developing a conjecture on the Diophantine stability, Mazur and Rubin [6]
establish heuristics on the distribution of period integrals m±(r) for a new
form and propose several conjectures:

(1) The random variable m± on the rationals with the fixed denominator
M , is asymptotically Gaussian.

(2) For a divisor g of N , there exist constants Cf and Df,g called the vari-
ance slope and the variance shift, respectively, such that the difference
between variance of m+ and Cf logM converges to Df,g when g is the
G.C.D. of M and N .

(3) The integer-valued random variable m±/Ω
±
f for suitable periods Ω±f is

equi-distributed modulo p.

Petridis-Risager [7] prove average versions of (1) and (2) using a theory of
Eisenstein series whose coefficients are the moments of period integrals. Even
more, they give explicit expressions for the variance slopes Cf and the shifts
Df,g in terms of special values of the symmetric square L-function of f . Lee-
Sun [5] also presents a proof of the average version of the conjectures including
the statement (3) by studying the dynamics of continued fractions. Using a
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theory of shifted convolution, Blomer et al. [1] obtain the second moment of
m±, i.e., the statement (2).

The above conjecture of Mazur-Rubin implies that the period integrals are
distributed with a certain regularity. Therefore, Mazur, Rubin, and Stein [6]
propose another conjecture:

Conjecture A (Mazur-Rubin-Stein). For 0 < x ≤ 1, one has

lim
M→∞

1

M

∑
r≤Mx

m±

( r

M

)
=

∞∑
n=1

an(f)e±(2nx)

n2
,

where e± is given by

e±(x) =

∫ x

0

exp(2πit)± exp(−2πit)dt.

In this paper, we prove:

Theorem 1.1. Let N be square-free. For any ε > 0 and 0 ≤ x ≤ 1, we have

1

M

∑
1≤r≤Mx

m±

( r

M

)
=
∞∑
n=1

an(f)e±(2nx)

n2
+Of,ε

(
N1/2+ε

M1/4−ε

)
,(1.1)

where the implicit constant in the error term depends only on ε and f ; and
independent of f if f is a newform.

The condition on N originates from the functional equation of the L-func-
tions. During preparation of the manuscript, N. Diamantis informed us that
a proof of Theorem 1.1 even for a general level is obtained by Diamantis-
Hoffstein-Kiral-Lee [2] using the functional equation for general levels. Let
us remark that even though the level is limited, a virtue of our paper is the
brevity of the proof. The role of smooth approximation of bump functions in
Diamantis-Hoffstein-Kiral-Lee [2], is played by Lemma 3.1 in present paper.

Acknowledgements. The author is grateful to Ashay Burungale for bring his
attention to the conjecture of Mazur-Rubin-Stein. He is also grateful to Barry
Mazur for clarifying his understanding on the conjectures of Mazur-Rubin. The
author would like to thank Nikolaos Diamantis for kindly sending us a preprint
about the Mazur-Rubin-Stein conjecture, a part of which inspires us to improve
the error in the main result. He is grateful to anonymous referee for providing
valuable suggestions to improve the manuscript.

2. Approximate functional equations of additive twists

This section is a summary of Kim-Sun [4, Section 2].
Let f ∈ S2k(N, δ) for a Nebentypus δ. Let WN =

(
0 −1
N 0

)
be the Fricke

involution. Note that f |WN ∈ S2k(N, δ). For x ∈ Q, let us set

t(x) =

(
1 x
0 1

)
.
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Let e(x) = exp(2πix). For f(z) =
∑
n≥1 ane(nz) and s ∈ C with <(s) >

k + 1/2, the partial L-function is given by

L(s, f, x) :=
∑
n≥1

an(f)e(nx)

ns
.

It can be easily verified that

L(1, f, x) = −2πi

∫ i∞

x

f(z)dz.(2.1)

Let q > 0 be an integer that is not necessarily prime to N . Let Q be the
least common multiple of N and q2. Let us set d = gcd(q2, N), N0 = N

d and
assume that

gcd(N0, d) = 1.

Hence Q = q2N
d . Let δ be decomposed as

δ = δ1δ2

corresponding to (Z/NZ)× ' (Z/N0Z)× × (Z/dZ)×. For x, y ∈ Z with xd −
N
d y = 1, let us set

Wd =

(
dx y
N d

)
.

The matrix Wd is a normalizer of Γ0(N). Let us set

WN,d = WNWd.

Then WN,d commutes with the Hecke operators T(n) when gcd(n,N) = 1 and

f
∣∣WN,d ∈ S2k

(
N, δ1δ2

)
. Furthermore, we have f

∣∣W2
N,d = δ(dx − N0y

2)f =

δ2(−N0)f. Note that if f is a newform, then f |WN,d = ζf for a ζ ∈ C with

ζ2 = δ2(−N0).
Let Φ be an infinitely differentiable function on (0,∞) with compact support

and
∫∞
0

Φ(y)dyy = 1, and set κ(t) =
∫∞
0

Φ(y)yt dyy . Let us set

F1,s(x) =
1

2πi

∫ 2+i∞

2−i∞
κ(t)Γ(s+ t)x−t

dt

t
and

F2,s(x) =
1

2πi

∫ 2+i∞

2−i∞
κ(−t)Γ(s+ t)x−t

dt

t
.

With those settings, we have the asymptotics of Fi,s and the approximate
functional equation of which proofs are given in Kim-Sun [4, (2.5), (2.6), (2.7)]:

Proposition 2.1. (1) For each i, we have

Fi,s(x) = O(Γ(<(s) + j)x−j) for all j ≥ 1 as x→∞.(2.2)

Fi,s(x) = Γ(s) +O
(

Γ
(
<(s)− 1

2

)
x

1
2

)
as x→ 0.(2.3)
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(2) For an integer a > 0 with gcd(a, q) = 1, choose an integer u > 0 such that

u ≡ −(aN0)−1 ( mod q2

d ). Then L(s, f, aq ) satisfies the approximate functional
equation

Γ(s)L
(
s, f,

a

q

)(2.4)

=

∞∑
n=1

an(f)e(anq )

ns
F1,s

(
n

y

)

+ i2kδ1(q)δ2(N0)

(
Q

4π2

)k−s∞∑
n=1

an(f
∣∣WN,d)e(unq )δ2(u)

n2k−s
F2,2k−s

(
4π2ny

Q

)
,

where y > 0 is a real number.

3. Proof of Theorem 1.1

Let f be a cusp form of weight 2 and a square-free level N with a Nebentypus
δ. Note that we have

e+(x) =
sin(2πx)

π
and e−(x) =

i(1− cos(2πx))

π
.

For integers n > 0 and M ≥ 2 and 0 < x ≤ 1, let us set

U(x,M ;n) :=
1

M

Mx∑
r=1

{
e
(rn
M

)
± e

(
−rn
M

)}
.

We need an estimate on the sum.

Lemma 3.1. Let M ≥ 2 and n ≥ 1 be integers. Let [n] be the least positive
residue of n modulo M and assume that n is not divisible by M . Then for a
real x with 0 ≤ x ≤ 1 we have

U(x,M ;n) =
e±([n]x)

[n]
+O

(
1

M

)
.

Proof. We may assume that n < M . Since U(x,M ;n) is a geometric series, it
is equal to

e( nM )(e( bMxcn
M )− 1)∓ (e(− bMxcn

M )− 1)

M(e( nM )− 1)
.

Here note that [n] = n as n < M . Since bMxc/M = x− θ/M with 0 ≤ θ < 1,
the last expression is equal to

(e(xn)− 1)∓ (e(−xn)− 1) +O( nM )

2πin+O(n
2

M )
+O

(
1

M

)
.

Hence we finish the proof. �
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We need an estimate on an exponential sum that can be obtained from one
on the Kloosterman sum (see Heath-Brown [3]):

Proposition 3.2. Let I be a sub-interval of [0, 1). Let a, b, and M ≥ 2 be
integers. Then one has∑

r
M ∈I

′
e

(
ar + br′

M

)
� gcd(a, b,M)1/2M1/2+ε,

where Σ′ is the sum over the integers 1 ≤ r ≤M with gcd(r,M) = 1.

For an integer M and Dirichlet character δ2 of modulus N/ gcd(M2, N), let
us set

V (x,M ;n) =
∑
r≤Mx

gcd(r,M)=1

δ2(r′)

{
e

(
r′n

M

)
± e

(
−r′n
M

)}
,

where r′ is the inverse of r modulo M . We also need:

Lemma 3.3. For two integers M ≥ 2, n ≥ 1 and a real 0 ≤ x ≤ 1, we have

V (x,M ;n)� N1/2 gcd(n,M)1/2M1/2+ε.

Proof. The case of M | n is obvious. Let us assume M - n and set N0 =
N/ gcd(M2, N), M = N0M0. Since δ2 is a periodic function of a period N0, it
can be written as

δ2(s) =

N0∑
j=1

cje

(
sjM0

M

)
form some cj with

∑N0

j=1 |cj |2 ≤ 1. Then, we obtain

V (x,M ;n) =

N0∑
j=1

cj
∑
r≤Mx

gcd(r,M)=1

{
e

(
r′(n+ jM0)

M

)
± e

(
−r′(n− jM0)

M

)}
.

From Cauchy-Schwartz inequality and Proposition 3.2, we finish the proof. �

Weil and Deligne have shown that for a cusp form f and ε > 0, there exists
a constant bf > 0 dependent only on f such that

an(f)�ε bfn
1/2+ε.(3.1)

Note that if f is a newform, then bf is independent of f and can be chosen as
bf = 1.

We are ready to give:

Proof of Theorem 1.1. First note that∑
r≤Mx

m±

( r

M

)
=
∑
g|M

∑
s≤gx

gcd(g,s)=1

m±

(
s

g

)
.(3.2)
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From (2.1), (2.4), and (3.2), we have

1

M

Mx∑
r=1

m±

( r

M

)
(3.3)

=

∞∑
n=1

an(f)U(x,M ;n)

n
F1,1

(
n

y

)

+
i2k

M

∑
g|M

δ1(g)δ2(N/e)

∞∑
n=1

an(f
∣∣WN,e)V (x, g;n)

n
F2,1

(
4π2ny

Ng2/e

)
,

where e = gcd(g2, N) and δ1, δ2 in the sum
∑
g|M are the Dirichlet characters

of moduli N/e and e, respectively. Here note that e and N/e are relatively
prime since N is square-free. Let us rewrite (3.3) as

S1 +
1

M

∑
g|M

δ1(g)δ2(N/e)S2(g).

First of all, consider the first sum S1. We split it into two parts,

S1 = S1,≤y + S1,>y,

a sum over n ≤ y and one over n > y, respectively. Observe that by Lemma
3.1 and the estimate F1,1(x) = O(1), the sum over n ≤ y is equal to∑

M-n
n≤y

an(f)e±([n]x)

[n]n
F1,1

(
n

y

)
+O

(
1

M

∑
n≤y
M-n

|an(f)|
n

)
+O

(∑
n≤y
M|n

|an(f)|
n

)
.

By (2.3) and the bound (3.1), this is equal to∑
n≤y
M-n

an(f)e±([n]x)

[n]n
+O

(
bf
∑
n≤y
M-n

n1/2+ε

n[n]

(
n

y

)1/2)
+O

(
bfy

1/2+ε

M

)
.(3.4)

Observe that for a real number b > 0 and y > M , we obtain∑
n≤y
M-n

nb

[n]
=

M−1∑
r=1

1

r

∑
n≤y

n≡r(M)

nb �
M−1∑
r=1

1

r

∑
q<y/M

(Mq + r)b � (logM)M b
( y
M

)1+b
.

Therefore, with b = ε, the error terms of (3.4) are equal to O
(
bf (logM)y1/2+ε

M

)
.

Separating the first summand of (3.4) into three parts, namely (1) n < M , (2)
M < n < y with M - n, and (3) M < n < y with M | n, the first summand of
(3.4) equals∑

n<M

an(f)e±(nx)

n2
+O

( ∑
M<n≤y
M-n

bf
n1/2−ε[n]

)
+O

(
bfy

1/2+ε

M

)
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=
∑
n<M

an(f)e±(nx)

n2
+O

(
bf (logM)y1/2+ε

M

)
.

Hence, finally, (3.4) is equal to

S1,≤y =
∑
n<M

an(f)e±(nx)

n2
+O

(
bf (logM)y1/2+ε

M

)
.

Note that the sum over n > y in the first sum of (3.3) also can be calculated
in a similar way but using (2.2) instead of (2.3). It is equal to

S1,>y =
∑
n>y

an(f)U(M,x;n)

n
F1,1

(
n

y

)
= O

(
bfy

1/2+ε logM

M

)
.

Now let us consider the sum S2(g). We also divide it into two parts:

S2(g) = S2,≤y(g) + S2,>y(g),

a sum over n ≤ Ag2/y and one over n > Ag2/y, respectively for A = N/(4π2e).
By Lemma 3.3 and (2.3), we obtain V (x, g;n) � N1/2 gcd(g, n)1/2g1/2+ε and
the sum over n ≤ Ag2/y is

S2,≤y(g)� bfN
1/2g1/2+ε

∑
n≤Ag2/y

gcd(n, g)1/2

n1/2−ε
.

The last sum is equal to∑
d|g

dε
∑

m≤Ag2/dy,gcd(m,g/d)=1

1

m1/2−ε �
(
Ag2

y

)1/2+ε∑
d|g

1

d1/2
.

Since
∑
d|g d

−1/2 � gε, the sum S2,≤y(g) is equal to

S2,≤y(g) = O

(
N1/2bfA

1/2+εg3/2+3ε

y1/2+ε

)
.

In a similar way as the last calculations together with (2.2), the sum over
n > Ag2/y is equal to

S2,>y(g) = O

(
N1/2bfA

1/2+εg3/2+3ε

y1/2+ε

)
.

Therefore, from the inequality
∑
g|M ga �Ma+ε for a > 0, we obtain

1

M

∑
g|M

|S2(g)| � N1/2bf
M

∑
g|M

A1/2+εg3/2+3ε

y1/2+ε
� bfN

1+εM1/2+4ε

y1/2+ε
.

In total, setting

y = N
1+ε
1+2εM

3/2+3ε
1+2ε ,

we complete the proof with a new ε > 0. �

Let EM be the average on the rationals in (0, 1) with the denominator M .
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Corollary 3.4. Let N be square-free. For ε > 0, we have

EM [m±]�f,ε N
1/2+εM−1/4+ε,

where the implicit constant in the error term is independent of f if f is a
newform.

Proof. Let us set

G±(f ;x) =

∞∑
n=1

an(f)e±(nx)

n2
.

From Möbius inversion formula, we obtain

φ(M)EM [m±] =

M∑
r=1

(r,M)=1

m±

( r

M

)
=
∑
d|M

µ

(
M

d

) d∑
s=1

m±

( s
d

)
.

By Theorem 1.1, this equals∑
d|M

µ

(
M

d

)[
dG±(f ; 1) +O

(
bfdN

1/2+ε

d1/4−ε

)]
.

Since φ(M)�M/ logM , q3/4+ε + 1�ε q
3/4+2ε, and∑

d|M

∣∣∣∣µ(Md
)∣∣∣∣ d3/4+ε =

∏
q|M

q:prime

(
1 + q3/4+ε

)
�ε M

3/4+2ε,

we obtain the proof of the Corollary with a new ε > 0. �
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