• Title/Summary/Keyword: steering wheel

Search Result 422, Processing Time 0.03 seconds

A VR-Based Integrated Simulation for the Remote Operation Technology Development of Unmanned-Vehicles in PRT System (자동 운전 PRT 차량의 무선 관제 기술 개발을 위한 가상 환경 기반 통합 시뮬레이터 개발)

  • Park, Pyung-Sun;Kim, Hyun-Myung;Ok, Min-Hwan;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.43-56
    • /
    • 2013
  • Personal Rapid Transit(PRT), which is one of the next generation convergence transport technology, PRT system requires operation technology for controlling diverse vehicles and dealing with a variety of abnormal driving situations on a large scale trackway structures in expected operational area more efficiently and reliably. Before developing PRT control technology, it is essential that multiple testing procedures stepwise with building small scale test-tracks and develop real unmanned-vehicles. However, it is expected that the experiments demand huge amount of time and physical cost. Thus, simulation in virtual environment is efficient to develop wireless based control technology for multiple PRT vehicles prior to building real-test environment. In this paper, we propose a VR-based integrated simulator which physics engine is applied so that it enables simulation of front-wheel-steering PRT system rather than simple rail track system. The proposed simulator is also developed that it can reflect geographical features, infrastructures and network topology of expected driving region.

A Study on the Development of PC-based DestTop Ship Maneuvering Simulator for trainning purpose (PC를 이용한 선박조종연습 DESKTOP Simulator개발에 관한 연구)

  • 허용범;윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.2
    • /
    • pp.1-13
    • /
    • 1996
  • Most of the ShipHandling Simulators of full-mission-bridge system need vast area to install and even PC-based maneuvering simulators are often equipped with Steering Wheel or Engine Telegraphe etc. of data input interface, which necessarily makes the user face with excessive financial burden. These have been one of the obstacles for the officers, captains, pilots and students in access to maneuvering simulation whenever they want to try it in advance prior to actual ship maneuvering. Subsequently, all the officers and captains come to have little chances to train themselves until they arualified as a pilot after a long period of time of realship maneuvering practice on board, which means they have to control they have to control their own ship at sea without clear understanding on her maneuverability when they are forced to do it on the way. And these lack of capability for maneuvering have used so often to result in marine casualties of collision with other ships or pier facilities while maneuvering in harbor. To prevent those accidents by means of enhancing their maneuvering ability, PC-based DeskTop Simulator that allows anyong to access readily at anytime is needed and in conformation to such demand this simulator has been developed. The Software this simulator written in Turbo Pascal Ver. 5.0 has adopted MMG mathmatical model theoretically in part and also it was designed to make it possible that all numeric data inputs and outputs with graphic presentation for maneuvering operation be carried out just only with keyboard and monitor console. With the Simulation software, all the officers, captains, pilots and even students who has a proper computer at hand are expected to be able to make an attempt to simulate the maneuvering of their ownship or any other types of them at any port in which they want to do it.

  • PDF

Evaluation of Electronic Pedal in Commercial Vehicles using Physiology Analysis of Electromyography (근전도 생리 분석을 이용한 상용차용 전자페달의 평가)

  • Kim, Jae-Jun;Kim, Kyung;Shin, Sun-Hye;Yu, Chang-Ho;Jeong, Gu-Young;Oh, Seung-Yong;Kwon, Tae-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1434-1440
    • /
    • 2011
  • In this paper, we assessed muscular activities of lower limbs and foot pressure for car and bus drivers according to operating three electronic pedals that we developed. To analyze drivers' physical exhaustion, muscular fatigue of lower limbs was evaluated. Eleven car drivers and six urban bus drivers were participated in this experiment. The virtual driving system was used for the real driving environment. The virtual driving system was comprised of a spring seat, a steering wheel, pedals (clutch, excel and brake pedals), a manual transmission and a virtual driving simulation. For the real vibration like situation on the road, six degree of freedom motion base system was used. Measured muscles were rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and gastrocnemius (Gn) muscles. For the quantitative muscular activities, integrated electromyography (IEMG) was analyzed. Muscular fatigues also were analyzed through the analysis of the median frequency. In addition, foot pressures were analyzed and compared through the peak and averaged pressure during the operating three developed electronic pedals. The experiments are conducted with total 17 drivers, 11 general public and 6 drivers. As a result of the analysis, electromyogram and fatigue analysis through intermediate frequency reduction for pedal-1 more efficient than other pedals. And foot pressure also was decreased. Consequently, we suggested the most efficient pedal and method to minimize the amount of cumulative fatigue.

A Study on the Reduction in VR Cybersickness using an Interactive Wind System (Interactive Wind System을 이용한 VR 사이버 멀미 개선 연구)

  • Lim, Dojeon;Lee, Yewon;Cho, Yesol;Ryoo, Taedong;Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.43-53
    • /
    • 2021
  • This paper presents an interactive wind system that generates artificial winds in a virtual reality (VR) environment according to online user inputs from a steering wheel and an acceleration pedal. Our system is composed of a head-mounted display (HMD) and three electric fans to make the user sense touch from the winds blowing from three different directions in a racing car VR application. To evaluate the effectiveness of the winds for reducing VR cybersickness, we employ the simulator sickness questionnaire (SSQ), which is one of the most common measures for cybersickness. We conducted experiments on 13 subjects for the racing car contents first with the winds and then without them or vice versa. Our results showed that the VR contents with the artificial winds clearly reduce cybersickness while providing a positive user experience.

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle (횡방향 거동 특성을 고려한 부하모사 시스템 해석)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.621-626
    • /
    • 2019
  • The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

Development of the 80-kW Test Tractor for Load Measurement of Agricultural Operations (농작업 부하 계측을 위한 80kW급 계측 트랙터 개발 및 검증)

  • Cho, Seung-Je;Kim, Jeong-Gil;Park, Jin-Sun;Kim, Yeon-Soo;Lee, Dongkeun
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.46-53
    • /
    • 2022
  • RIn this study, a test tractor that could measure various types of agricultural operational loads was developed, and its performance was verified. This tractor could be used to measure the load generated during agricultural work and convert the related data into a database. A test tractor was developed using an 80-kW-rated load tractor, and it could measure various types of field test data, such as engine torque and rpm, wheel torque, PTO(power take-off) torque, hexometer, IMU/INS sensor, steering angle sensor, hydraulic pressure, and flow sensor data. To verify the developed test tractor, a verification test using an agriculture rotavator was performed. The test conditions were L1, L2, and L3 based on the tractor's main and sub-transmission stages, and stages 1 and 2 were selected as the PTO. In a comparison of the analyzed test data, similar tendencies in the test results of this research and other research (Kim's research) were seen. Through this, the developed test tractor was verified. In the future, we plan to conduct research on the tractor developed in this study using various attached working machines.

Deep Learning based Vehicle AR Manual for Improving User Experience (사용자 경험 향상을 위한 딥러닝 기반 차량용 AR 매뉴얼)

  • Lee, Jeong-Min;Kim, Jun-Hak;Seok, Jung-Won;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.125-134
    • /
    • 2022
  • This paper implements an AR manual for a vehicle that can be used even in the vehicle interior space where it is difficult to apply the augmentation method of AR content, which is mainly used, and applies a deep learning model to improve the augmentation matching between real space and virtual objects. Through deep learning, the logo of the steering wheel is recognized regardless of the position, angle, and inclination, and 3D interior space coordinates are generated based on this, and the virtual button is precisely augmented on the actual vehicle parts. Based on the same learning model, the function to recognize the main warning light symbols of the vehicle is also implemented to increase the functionality and usability as an AR manual for vehicles.

Impact of the Fidelity of Interactive Devices on the Sense of Presence During IVR-based Construction Safety Training

  • Luo, Yanfang;Seo, JoonOh;Abbas, Ali;Ahn, Seungjun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.137-145
    • /
    • 2020
  • Providing safety training to construction workers is essential to reduce safety accidents at the construction site. With the prosperity of visualization technologies, Immersive Virtual Reality (IVR) has been adopted for construction safety training by providing interactive learning experiences in a virtual environment. Previous research efforts on IVR-based training have found that the level of fidelity of interaction between real and virtual worlds is one of the important factors contributing to the sense of presence that would affect training performance. Various interactive devices that link activities between real and virtual worlds have been applied in IVR-based training, ranging from existing computer input devices (e.g., keyboard, mouse, joystick, etc.) to specially designed devices such as high-end VR simulators. However, the need for high-fidelity interactive devices may hinder the applicability of IVR-based training as they would be more expensive than IVR headsets. In this regard, this study aims to understand the impact of the level of fidelity of interactive devices in the sense of presence in a virtual environment and the training performance during IVR-based forklift safety training. We conducted a comparative study by recruiting sixty participants, splitting them into two groups, and then providing different interactive devices such as a keyboard for a low fidelity group and a steering wheel and pedals for a high-fidelity group. The results showed that there was no significant difference between the two groups in terms of the sense of presence and task performance. These results indicate that the use of low-fidelity interactive devices would be acceptable for IVR-based safety training as safety training focuses on delivering safety knowledge, and thus would be different from skill transferring training that may need more realistic interaction between real and virtual worlds.

  • PDF

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.

Effects of Large Display Curvature on Postural Control During Car Racing Computer Game Play (자동차 경주 컴퓨터 게임 시 대형 디스플레이 곡률이 자세 제어에 미치는 영향)

  • Yi, Jihhyeon;Park, Sungryul;Choi, Donghee;Kyung, Gyouhyung
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Display technology has recently made enormous progress. In particular, display companies are competing each other to develop flexible display. Curved display, as a precursor of flexible display, are now used for smart phones and TVs. Curved monitors have been just introduced in the market, and are used for office work or entertainment. The aim of the current study was to investigate whether the curvature of a 42" multi-monitor affects postural control when it is used for entertainment purpose. The current study used two curvature levels (flat and 600mm). Ten college students [mean(SD) age = 20.9 (1.5)] with at least 20/25 visual acuity, and without color blindness and musculoskeletal disorders participated in this study. In a typical VDT environment, each participant played a car racing video game using a steering wheel and pedals for 30 minutes at each curvature level. During the video game, a pressure mat on the seat pan measured the participant's COP (Center of Pressure), and from which four measures (Mean Velocity, Median Power Frequency, Root-Mean-Square Distance, and 95% Confidence Ellipse Area) were derived. A larger AP (Anterior-Posterior) RMS distance was observed in the flat condition, indicating more forward-backward upper body movements. It can be partly due to more variability in visual distance across display, and hence longer ocular accommodation time in the case of the flat display. In addition, a different level of presence or attention between two curvature conditions can lead to such a difference. Any potential effect of such a behavioral change by display curvature on musculoskeletal disorders should be further investigated.