• Title/Summary/Keyword: steep slope failure

Search Result 33, Processing Time 0.024 seconds

A Study on the Causes of Steep Slope Failure induced Heavy Rainfall (집중호우시 급경사지 붕괴발생 원인분석 연구)

  • Ryu, Ji Hyeob;Lim, Ik Hyen;Hwang, Eui Jin
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2011
  • This paper was to examine the causes of steep slope failure during the season of heavy rainfall. For the purpose, the paper carefully analyzed the sites of steep slope failure, which happened in July 2009. The direct cause of steep slope failure was much related to heavy rainfall during summer. The paper continued to verify that additional causes include the malfunction of diverse waterways, the slope design without considering weathering soils and related characteristics, the lack of the waterway size, the intrusion of plant roots, the reinforced technique without considering slope conditions, etc.

  • PDF

Recommendation of I-D Criterion for Steep-Slope Failure Estimation Considering Rainfall Infiltration Mechanism (강우침투 메커니즘을 이용한 급경사지 붕괴예측 I-D 기준식 제안)

  • Song, Young-Karb;Kim, Young-Uk;Kim, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.65-74
    • /
    • 2013
  • The natural disaster occurrences and the loss of lives caused by the steep-slope failures in Korea were investigated in this study. The investigation includes the frequency rate of the steep-slope failures with respect to the characteristics of precipitation, underlying bedrock, and weathered soils. Analysis on the problems in the existing estimation methods of steep-slope failure was also undertaken, and a new model using unsaturated infinite slope stability was developed for the better slope failure estimation. The slope analyses by the newly developed model were performed considering unsaturated infinite slope, the gradient of slope, and hydro/mechanical properties of soils. Steep-slope failure estimation criterion is proposed based on the analysis results. In addition, the precipitation amount corresponding to warning stages against steep-slope failure is provided as an equation of Intensity-Duration criterion.

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

Establishment of Early Warning System of Steep Slope Failure Using Real-time Rainfall Data Analysis (실시간 강우자료분석을 활용한 산사태 경보시스템 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Park, Dug-Keun;Park, Jung-Hoon;Son, Sung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.253-262
    • /
    • 2010
  • In this study, localized heavy rainfall occurred during the collapse of steep slopes adjacent to the construction site and to ensure the safety of residents to build an early warning system was performed. Forecast/Alert range was estimated based on vulnerability landslide map and past disaster history. And established a critical line in consideration of the characteristics of local rainfall and operating a snake line, the study calculated causing and non-causing points. Also, be measured in real-time analysis of rainfall data in conjunction with the system before the steep slope failure occurred forecast/Alert System is presented.

  • PDF

Improvement of Field Assessment List for Slope-stability Estimation (국내외 급경사지 평가표 분석을 통한 개선방안 연구)

  • Son, Young-Jin;Park, Dug-Keun;Oh, Jeong-Rim;Song, Young-Karb
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.509-522
    • /
    • 2010
  • There is a increasing trend in disaster occurrence due to steep-slope failures in urban area during typhoon and torrential rain season in Korea. The underlying hazards that cause slope failure are mainly linked with urbanization and industrialization. To minimize the disaster damages by slope failure, objective and unified evaluation approached are desired. Since currently available evaluation checklists are developed for specific purposed, there is a limitation to adapt those checklists for stability evaluation in natural terrain. This study proposes an improved evaluation checklist based on the comparison of previous checklists and applicability and feasibility are analyzed implementing field application.

  • PDF

Permeability Coefficient of Unsaturated Soil in Steep Slope Failure Area (붕괴가 발생한 급경사지의 현장 투수계수)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.921-926
    • /
    • 2010
  • To examine saturation characteristics of an unsaturated soil in the steep slope area with collapse, it separated dry season from rainy season and measured water content and permeability, and measured permeability by using a tension infiltrometer in the site. In addition, it conducted electrical resistivity survey to look into thickness of ground and geological structure of underground. The collapsed slope increased depth of weathered zone compared to upper slope, and there electrical resistivity anomalous zone caused by the filtrated underground water was observed. The permeability of the collapsed area was observed high compared to upper and lower slopes of retarding basin without collapse, and the permeability measured by dividing the dry season and rainy season was measured high in case of dry season.

  • PDF

Analysis of Steep slope Disaster Sites using Geographic Information System (GIS를 활용한 급경사지 재해현장 분석 -전북 무주군, 장수군, 진안군 중심으로-)

  • Lee, Min-Seok;Oh, Jeong-Rim;Park, Dug-Keun;Kim, Man-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.940-945
    • /
    • 2010
  • There are human casualties that caused by slope-stability related disasters such as landslide and debris flow during typhoon and rainy season every year in Korea. These disaster sites can be analyzed systematically using digital topographic data and aerial photogrammetry. In this study, geographical factors such as slope degree, geology, height, and soil depth are analyzed in four landslide-disaster sites from Muju, Jinan, and Jangsu County based on digital elevation maps generated by ArcGIS. Each site showed different characteristics in geology and geography and it is found that GIS can be utilized for the visualization of steep-slope failure areas.

  • PDF

Disaster Vulnerability Analysis for Steep Slope Failure (급경사지 재해도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, Sang-Hyun;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.930-939
    • /
    • 2009
  • Most of steep slope failures occurring in Korea have appeared during the localized heavy rain period, whereas the evaluation model of a disaster vulnerability analysis that has been proposed to date, has been prepared in consideration only of external factors comprising geographical features. This study calculated a wetness index and a contributory area which delivers moisture to the upper slant surface during the rainfall period, and also conducted a disaster vulnerability analysis in consideration of the convergence of surface water as well as the water system created during the occurrence of rainfall by including a curvature that shows a close relevance with the shape of the minute water system that is created temporarily during the occurrence of rainfall and with the convergence and divergence of surface water. When compared with a steep slope failure occurring within a selected model district in order to verify the prepared disaster analysis, a landslide occurring in the model district had emerged in a region in which the disaster vulnerability analysis was high and the density of the minor water system was also high. If these research results are extended nationwide, it is the most effective to use a disaster vulnerability analysis and the density of the minute water system; and it is supposed to be the simplest and the most effective method for preparing a disaster analysis of mountainous land shape such as the model district.

  • PDF

Slope Behavior Analysis Using the Measurement of GFRP Underground Displacement (GFRP 록볼트 계측을 통한 사면 거동 분석)

  • Jin, Ji-Huan;Lim, Hyun-Taek;Bibek, Tamang;Chang, Suk-Hyun;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • Although many researches related to monitoring and automatic measuring devices for early warning system during slope failure have been carried out in Korea and aboard, most of the researches have installed measuring devices on the slope surface, and there are only few researches about warning systems that can detect and warn before slope failure and disaster occurs. In this study, slope failure simulation experiment was performed by attaching sensors to rock bolts, and initial slope behavior characteristics during slope failure were analyzed. Also, the experiment results were compared and reviewed with varied slope conditions, i.e. shotcrete slope and natural slope, and varied material conditions, i.e. GFRP and steel rock bolt. This study can be used as a basic data in development of warning and alarm system for early evacuation through early detection and warning before slope failure occurs in steep slopes and slope failure vulnerable areas.

Assessment of Factors affecting Steep-slope Failure using Artificial Neural Network (인공신경망을 활용한 급경사지 붕괴유발인자 평가)

  • Song, Young-Karb;Oh, Jeong-Rim;Park, Dug-Keun;Son, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1342-1348
    • /
    • 2010
  • Currently available evaluation checklists are developed for specific purposed using different parameters and items determined by different weighting factors. Those items with different weighting are sometimes said that they are based on the engineering judgement and leap of faith and, therefore, there is a limitation to adapt those checklists for slope-stability evaluation in the field. This study reviews factors affecting slope stability, analyze the relationship between those factors and slope failures using artificial neural network, and proposed a slope-stability evaluation model for adequate weighting for the factors.

  • PDF