• 제목/요약/키워드: steel-making

검색결과 559건 처리시간 0.031초

재고수준을 고려한 제철원료 수송을 위한 선박 일정계획 수립 모형 (A Ship Scheduling Model for Raw Material Transportation with Yard Storage Constraints in a Steel Mill)

  • 성덕현;서민수;김상원;김우진
    • 한국IT서비스학회지
    • /
    • 제10권3호
    • /
    • pp.49-59
    • /
    • 2011
  • A ship scheduling model is presented for the raw material transportation problem with yard storage constraints in a steel mill. The problem is formulated as 0, 1 mixed integer programming considering such constraints as loading port conditions, ship size and hold capacity, unloading conditions, and yard storage space. In addition, inventory related constraints including safety stock are taken into consideration to support the continuous operations of steel making process. The proposed model has been implemented and applied successfully to a real world problem, and its results show the improvement of performance compared to the traditional method. For example, the arrival dates of ships are determined satisfying the constraints. The total inventory level is minimized at the stock yard as a result. Also, the safety inventory level is always kept at the planning stage, and the standard deviation of total inventory level is reduced significantly. Further research is expected to develop efficient heuristics to have a better response time for even larger scale problems.

초음속 코히어런트 제트에 관한 기초적 연구 (A Fundamental Study of the Supersonic Coherent Jet)

  • 정미선;조위분;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2139-2144
    • /
    • 2003
  • In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. The objective of the present study is to investigate the supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jet.

  • PDF

12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II) (A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II))

  • 김창희;서현욱;윤기봉;박기성;김승태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

초음속 코히어런트 제트에 관한 수치해석적 연구 (A Computational Study of the Supersonic Coherent Jet)

  • 정미선;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

자동차용 아연도금강판의 심 용접조건과 용접성에 관한 연구 (A Study on the Welding Conditions of Weldability of Team Welding for Galvanized Steel Sheets of Automotive)

  • 임재규;정균호;국중하
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2001
  • This paper is studied about welding conditions and weldability of seam welding for galvanized steel sheet of automotive. The fuel tank of automobile is made by seam welding to be required of airtight or oiltight. This method have required a short time for welding, simplicity operation progress and little HAZ. Especially, it has more less residual stress and transformation than different welding progress. So, this study is for decreasing the leakage occurrence rate and to make standard operating condition table anyone can operate easily. Therefore, this study is analyzed the optimum conditions of seam welding for making the automobile with galvanized steel sheets by means of observing the microstructure and configuration back projection, RT, tensile-shear strengths test and SEM. Optimum conditions of seam welding obtained as follows, current 17.2-17.6kA speed 1.0m/min weld time 4:10:6 and current 16.5-17.4kA, speed 0.83m/min, weld time 4:10:4 at t1.0, and current, 18.5-18.9kA, speed 0.8m/min, weld time 4:10:4 and current 16.5-17.4kA, speed 0.68m/mi, weld time 4:10:2 at t1.6.

  • PDF

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제5권1호
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.

연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가 (An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs)

  • 박태호;김지훈;최주;예병준
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

Second-order analysis of planar steel frames considering the effect of spread of plasticity

  • Leu, Liang-Jenq;Tsou, Ching-Huei
    • Structural Engineering and Mechanics
    • /
    • 제11권4호
    • /
    • pp.423-442
    • /
    • 2001
  • This paper presents a method of elastic-plastic analysis for planar steel frames that provides the accuracy of distributed plasticity methods with the computational efficiency that is greater than that of distributed plasticity methods but less than that of plastic-hinge based methods. This method accounts for the effect of spread of plasticity accurately without discretization through the cross-section of a beam-column element, which is achieved by the following procedures. First, nonlinear equations describing the relationships between generalized stresses and strains of the cross-section are derived analytically. Next, nonlinear force-deformation relationships for the beam-column element are obtained through lengthwise integration of the generalized strains. Elastic-plastic flexibility coefficients are then calculated by differentiating the above element force-deformation relationships. Finally, an elastic-plastic stiffness matrix is obtained by making use of the flexibility-stiffness transformation. Adding the conventional geometric stiffness matrix to the elastic-plastic stiffness matrix results in the tangent stiffness matrix, which can readily be used to evaluate the load carrying capacity of steel frames following standard nonlinear analysis procedures. The accuracy of the proposed method is verified by several examples that are sensitive to the effect of spread of plasticity.

제강공정에서 수소의 거동 (Hydrogen Behavior in the Steelmaking Process)

  • 심상철;조중욱;황상택;김광천
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.