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Abstract

In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the
amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the
molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between
the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen
jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer
supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the
alternatives which are applicable to the electric furnace system. It has a flame around the conventional
supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading
to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the
combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet
clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared
with the conventional supersonic jet. A computational study is carried out to solve the compressible,
axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared
with the conventional supersonic jets.
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(a) Coherent nozzle

(b) Cross sectional view the nozzle used in experiment

Fig. 2 Schematics of the supersonic coherent nozzle
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Fig. 10 Static pressure distributions in the radial direction

Table. 1 Comparison of mass entrainments
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