• Title/Summary/Keyword: steel truss

Search Result 401, Processing Time 0.021 seconds

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

Consequence-based robustness assessment of a steel truss bridge

  • Olmati, Pierluigi;Gkoumas, Konstantinos;Brando, Francesca;Cao, Liling
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.379-395
    • /
    • 2013
  • Aim of this paper is to apply to a steel truss bridge a methodology that takes into account the consequences of extreme loads on structures, focusing on the influence that the loss of primary elements has on the structural load bearing capacity. In this context, the topic of structural robustness, intended as the capacity of a structure to withstand damages without suffering disproportionate response to the triggering causes while maintaining an assigned level of performance, becomes relevant. In the first part of this study, a brief literature review of the topics of structural robustness, collapse resistance and progressive collapse takes place, focusing on steel structures. In the second part, a procedure for the evaluation of the structural response and robustness of skeletal structures under impact loads is presented and tested in simple structures. Following that, an application focuses on a case study bridge, the extensively studied I-35W Minneapolis steel truss bridge. The bridge, which had a structural design particularly sensitive to extreme loads, recently collapsed for a series of other reasons, in part still under investigation. The applied method aims, in addition to the robustness assessment, at increasing the collapse resistance of the structure by testing alternative designs.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.

Reliability evaluation of steel truss bridge due to traffic load based on bridge weigh-in-motion measurement

  • Widi Nugraha;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.323-336
    • /
    • 2022
  • Steel truss bridge is one of the most widely used bridge types in Indonesia. Out of all Indonesia's national roads, the number of steel truss bridges reaches 12% of the total 17,160 bridges. The application of steel truss bridges is relatively high considering this type of bridge provides advantages in the standardization of design and fabrication of structural elements for typical bridge spans, as well as ease of mobilization. Directorate of Road and Bridge Engineering, Ministry of Works and Housing, has issued a standard design for steel truss bridges commonly used in Indonesia, which is designed against the design load in SNI 1725-2016 Bridge Loading Standards. Along with the development of actual traffic load measurement technology using Bridge Weigh-in-Motion (B-WIM), traffic loading data can be utilized to evaluate the reliability of standard bridges, such as standard steel truss bridges which are commonly used in Indonesia. The result of the B-WIM measurement on the Central Java Pantura National Road, Batang - Kendal undertaken in 2018, which supports the heaviest load and traffic conditions on the national road, is used in this study. In this study, simulation of a sequences of traffic was carried out based on B-WIM data as a moving load on the Australian type Steel Truss Bridge (i.e., Rangka Baja Australia -RBA) structure model with 60 m class A span. The reliability evaluation was then carried out by calculating the reliability index or the probability of structural failure. Based on the analysis conducted in this study, it was found that the reliability index of the 60 m class Aspan for RBA bridge is 3.04 or the probability of structural failure is 1.18 × 10-3, which describes the level of reliability of the RBA bridge structure due to the loads from B-WIM measurement in Indonesia. For this RBA Bridge 60 m span class A, it was found that the calibrated nominal live load that met the target reliability is increased by 13% than stated in the code, so the uniform distributed load will be 7.60 kN/m2 and the axle line equivalent load will be 55.15 kN/m.

Analytical testing and evaluation of truss typed structures for tunnel maintenance

  • Lee, Dongkyu;Kim, Dohwan;Lee, Jaehong;Noh, Pilsung;Park, Sungsoo
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.949-961
    • /
    • 2015
  • The goal of this study is to present numerical modeling and analytical testing in order to evaluate an innovative space truss typed temporary structure, which is used to maintenance and repair of road tunnels. The present space truss structure has merits to use UL-700 high strength steel tube as members and to carry out maintenance and repair works of road tunnels without blocking cars and transportations. Numerical modeling and analytical testing of the space truss are investigated by using commercial engineering software, i.e., ABAQUS 6.5-1, and then it is verified that the truss structure has both structural safety and effective function for maintenances and repairs of road tunnels.

A comparative study on optimum design of multi-element truss structures

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.521-535
    • /
    • 2016
  • A Harmony Search (HS) and Genetic Algorithms (GA), two powerful metaheuristic search techniques, are used for minimum weight designs of different truss structures by selecting suitable profile sections from a specified list taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB interacting with SAP2000-OAPI to obtain solution of design problems. The stress constraints according to AISC-ASD (Allowable Stress Design) and displacement constraints are considered for optimum designs. Three different truss structures such as bridge, dome and tower structures taken from literature are designed and the results are compared with the ones available in literature. The results obtained from the solutions for truss structures show that optimum designs by these techniques are very similar to the literature results and HS method usually provides more economical solutions in multi-element truss problems.

Impact resistant properties of Kagome truss reinforced composite panels

  • Choi, Jeong-Il;Park, Se-Eon;Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Jae-Seung;Lee, Bang Yeon
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.391-398
    • /
    • 2021
  • This paper presents an experimental study exploring impact resistant properties of Kagome truss reinforced composite panels. Three types of panels with different materials and reinforcements, i.e., ultra-high-performance mortar, steel fiber, and Kagome truss, were designed and manufactured. High-velocity projectile impact tests were performed to investigate the impact response of panels with dimensions of 200 mm×200 mm×40 mm. The projectile used in the testing was a steel slug with a hemispherical front; the impact energy was 1 557 J. Test results showed that the Kagome truss reinforcement was effective at improving the impact resistance of panels in terms of failure patterns, damaged area, and mass loss. Synergy effects of a combination of Kagome truss and fiber reinforcements for the improvement of impact resistance capacity of ultra-high-performance mortar were also observed.

Experimental Study on the Shear Capacity of the U-Flanged Truss Hybrid Beam With Reinforced End Zone (단부 보강에 따른 U-플랜지 트러스 복합보의 전단 내력에 관한 실험연구)

  • Kim, Young Ho;Park, Sung Jin;Oh, Myoung Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • The U-flanged truss hybrid beam is a new composite beam made by pouring concrete into the U-flanged truss beam. In this study, an experimental study was performed to verify the shear capacity of U-flanged truss hybrid beams with the newly developed end reinforcement details. For all specimens, the maximum shear strength was determined by shear failure of concrete in the loading point The detail reinforced with stirrups at the end zone can exhibit the greatest shear strength, but the method of reinforcing the end zone using vertical steel plates, which is a relatively easy method to manufacture, is considered to be the most effective detail in terms of shear strength and ductility. Also, in the case of U-flanged truss hybrid beams reinforced with vertical steel plates at the end zone, the shear strength can be evaluated on the safety side by using the Korea Design Standard formula.

Cost-based design of residential steel roof systems: A case study

  • Rajan, S.D.;Mobasher, B.;Chen, S.Y.;Young, C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • The cost effectiveness of using steel roof systems for residential buildings is becoming increasingly apparent with the decrease in manufacturing cost of steel components, reliability and efficiency in construction practices, and the economic and environmental concerns. While steel has been one of the primary materials for structural systems, it is only recently that its use for residential buildings is being explored. A comprehensive system for the design of residential steel roof truss systems is presented. In the first stage of the research the design curves obtained from the AISI-LRFD code for the manufactured cross-sections were verified experimentally. Components of the truss systems were tested in order to determine their member properties when subjected to axial force and bending moments. In addition, the experiments were simulated using finite element analysis to provide an additional source of verification. The second stage of the research involved the development of an integrated design approach that would automatically design a lowest cost roof truss given minimal input. A modified genetic algorithm was used to handle sizing, shape and topology variables in the design problem. The developed methodology was implemented in a software system for the purpose of designing the lowest cost truss that would meet the AISI code provisions and construction requirements given the input parameters. The third stage of the research involved full-scale testing of a typical residential steel roof designed using the developed software system. The full scale testing established the factor of safety while validating the analysis and design procedures. Evaluation of the test results indicates that designs using the present approach provide a structure with enough reserve strength to perform as predicted and are very economical.