References
- AISC - ASD (1989), Manual of Steel Construction: Allowable Stress Design, American Institute of Steel Construction, Chicago, IL, USA.
- Artar, M. (2016), "Optimum design of steel space frames under earthquake effect using harmony search", Struct. Eng. Mech., Int. J., 58(3), 597-612. https://doi.org/10.12989/sem.2016.58.3.597
- Artar, M. and Daloglu, A.T. (2015a), "Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm", Steel Compos. Struct., Int. J., 19(4), 1035-1053. https://doi.org/10.12989/scs.2015.19.4.1035
- Artar, M. and Daloglu, A.T. (2015b), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., Int. J., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503
- Artar, M. and Daloglu, A.T. (2015c), "The optimization of multi-storey composite steel frames with genetic algorithm including dynamic constraints", Teknik dergi, 26(2), 7077-7098.
- Aydogdu, İ. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
- Daloglu, A. and Armutcu, M. (1998), "Optimum design of plane steel frames using genetic algorithm", Teknik Dergi, 116, 1601-1615.
- Daloglu, A.T., Artar, M., Ozgan, K. and Karakas, A.I. (2016), "Opitimum design of steel space frames including soil-structure interaction", Struct. Multidisp. Optim., 54(1), 117-131. https://doi.org/10.1007/s00158-016-1401-x
- Dede, T. (2014), "Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures", Ksce. J. Civil Eng., 18(6), 1759-1767. https://doi.org/10.1007/s12205-014-0553-8
- Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5), 755-768. https://doi.org/10.1007/s00158-010-0533-7
- Degertekin, S.O., Saka, M.P. and Hayalioglu, M.S. (2008), "Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm", Eng. Struct., 30(1), 197-205. https://doi.org/10.1016/j.engstruct.2007.03.014
- Degertekin, S.O., Hayalioglu, M.S. and Gorgun, H. (2009), "Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm", Steel Compos. Struct., Int. J., 9(6), 535-555. https://doi.org/10.12989/scs.2009.9.6.535
- Degertekin, S.O., Hayalioglu, M.S. and Gorgun, H. (2011), "Optimum design of geometrically nonlinear steel frames with semi-rigid connections using improved harmony search method", Muhendislik Dergisi, Dicle University, Department of Engineering, 2(1), 45-56.
- Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2000), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75(2), 209-224. https://doi.org/10.1016/S0045-7949(99)00084-X
- Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison- Wesley, Reading, MA, USA.
- Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., Int. J., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
- Hasancebi, O. and Carbas, S. (2014), "Bat inspired algorithm for discrete size optimization of steel frames", Adv. Eng. Softw., 67, 173-185. https://doi.org/10.1016/j.advengsoft.2013.10.003
- Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009), "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87(5-6), 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002
- Hasancebi, O., Carbas, S. and Saka, M.P. (2010), "Improving performance of simulated annealing in structural optimization", Struct. Multdisc. Optim., 41(2), 189-203. https://doi.org/10.1007/s00158-009-0418-9
- Hayalioglu, M.S. and Degertekin, S.O. (2004), "Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization", Struct. Multidisc. Optim., 27(4), 259-271. https://doi.org/10.1007/s00158-003-0357-9
- Kameshki, E.S. and Saka, M.P. (2001), "Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm", Comput. Struct., 79(17), 1593-1604. https://doi.org/10.1016/S0045-7949(01)00035-9
- Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., Int. J., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- MATLAB (2009), The Language of Technical Computing; The Mathworks, Natick, MA, USA.
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. onstr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
- SAP2000 (2008), Integrated Finite Elements Analysis and Design of Structures; Computers and Structures, Inc., Berkeley, CA, USA.
- Togan, V. and Daloglu, A.T. (2008), "An improved genetic algorithm with initial population strategy and self-adaptive member grouping", Comput. Struct., 86(11-12), 1204-1218. https://doi.org/10.1016/j.compstruc.2007.11.006
- Togan, V., Daloglu, A.T. and Karadeniz, H. (2011), "Optimization of trusses under uncertainties with harmony search", Struct. Eng. Mech., Int. J., 37(5), 543-560. https://doi.org/10.12989/sem.2011.37.5.543
Cited by
- Border-search and jump reduction method for size optimization of spatial truss structures pp.2095-2449, 2018, https://doi.org/10.1007/s11709-018-0478-2
- Innovation in Bridge Life-cycle Cost Assessment vol.196, pp.None, 2016, https://doi.org/10.1016/j.proeng.2017.07.222
- Performance based design optimum of CBFs using bee colony algorithm vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.613
- Optimization of domes against instability vol.28, pp.4, 2016, https://doi.org/10.12989/scs.2018.28.4.427
- Optimization of the braced dome structures by using Jaya algorithm with frequency constraints vol.30, pp.1, 2016, https://doi.org/10.12989/scs.2019.30.1.047
- Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm vol.33, pp.5, 2016, https://doi.org/10.12989/scs.2019.33.5.747
- Evaluation of Bridge Project Variants from the LCC Perspective vol.47, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jera.47.63
- Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.853
- Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.805
- Discrete sizing design of steel truss bridges through teaching-learning-based and biogeography-based optimization algorithms involving dynamic constraints vol.34, pp.None, 2016, https://doi.org/10.1016/j.istruc.2021.09.101