• 제목/요약/키워드: steel ties

검색결과 62건 처리시간 0.023초

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

Test of Headed Reinforcement in Pullout II: Deep Embedment

  • Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.151-159
    • /
    • 2006
  • A total of 32 pullout tests were performed for the multiple headed bars relatively deeply embedded in reinforced concrete column-like members. The objective was to determine the minimum embedment depth that was necessary to safely design exterior beam-column joints using headed bars. The variables for the experiment were embedment depth of headed bar, center-to-center distance between adjacent heads, and amount of supplementary reinforcement. Regular strength concrete and grade SD420 reinforcing steel were used. The results of the test the indicated that a headed bar embedment depth of $10d_b$ was not sufficient to have relatively closely installed headed bars develop the pullout strength corresponding to the yield strength. All the experimental variables, influenced the pullout strength. The pullout strength increased with increasing embedment depth and head-to-head distance. It also increased with increasing amount of supplementary reinforcement. For a group of closely-spaced headed bars installed in a beam-column joint, it is recommended to use column ties at least 0.6% by volume, 1% or greater amount of column main bars, and an embedment depth of $13d_b$ or greater simultaneously, to guarantee the pullout strength of individual headed bars over 125% of $f_y$ and ductile load-displacement behavior.

PT공법을 적용한 80MPa급 콘크리트 아웃리거부재의 실험적 연구 (Experimental study of structural behavior of 80MPa concrete outrigger member using post tension method)

  • 최종문;김우재
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.31-34
    • /
    • 2009
  • Large outrigger elements tie the concrete core to perimeter columns, significantly increasing the building's lateral stiffness as well as its resistance to overturning due to wind. The outriggers are deep elements, and large tie forces are resisted by top and bottom heavy longitudinal reinforcing and vertical ties. To reduce construction costs, all primary reinforcing bars in outrigger levels are SD500. Further, concrete strengths of 80MPa have been specified for outrigger elements. However, the reductions in the amount of concrete and reinforcement steel are more increased in tall building. With these backgrounds, 80MPa high strength concrete outrigger system using post tension method is developed. Significant economic savings can be made by reducing the element sizes and material content. The developed outrigger system is designed using strut-and-tie models. In addition, four 1/4-scale test specimens were selected from the same prototype structure. The results from the tests are confirmed that the structural behaviors of the developed outrigger member have better capacities than those of a conventional method.

  • PDF

Pullout Test of Retrofit Anchors using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yon-Gon
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.201-210
    • /
    • 1999
  • An experimental study was carried out to determine pullout behavior of a new type of anchor bolt that used deformed reinforcement and a commercial adhesive. Concrete slabs and columns with about 20-MPa compressive strength were used for 136 pullout tests performed. Test variables included anchor diameter (10 mm ~ 32 mm). embedment depth (10$\Phi$ or 15$\Phi$), edge effect. and Presence of transverse reinforcement in existing concrete. In Tyre-S test. where the edge or reinforcing steel effect was not included, the anchor Pullout strengths increased with increasing anchor diameters. Anchors with 15$\Phi$ embedment depth had higher Pullout strengths than those with 100 embedment depth The largest average Pullout load of 208 kN was determined for anchors made with D25 reinforcement and with 15$\Phi$ embedment depth. In Type-E tests, where the anchors were installed close to the edge of existing concrete, there were reductions in pullout strengths when compared to those determined in Type-S tests. In Type-ER tests, influence of the reinforcement in existing concrete on the anchor pullout strengths was examined using reinforced concrete and plain concrete columns Test results indicated that existing transverse reinforcement (column ties) did not help increase the pullout strength. The overall pullout test results revealed that the new anchor bolt can develop large pullout strengths while the anchors can be made of materials that are readily available in the market.

  • PDF

고강도 전단 보강근과 비폐쇄형 보강근의 혼용에 의한 RC보의 보강 효과 (U-shaped reinforcement for bond splitting prevention in RC beams)

  • 곽성근;이현아;윤혜선;김길희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.201-204
    • /
    • 2006
  • The shear resistance of RC beams is subject to the amount of shear-reinforcing bars ($p_w$) and yield strength ($f_{wy}$) as well as their interactive influence ($p_wf_{wy}$). Thus, it is reasonably expected that high-strength steel bars can greatly reduce the necessary amount of shear-reinforcing bars. On the other hand, although the bond strength is influenced by the amount of shear reinforcing bars, it is not affected by the yield strength. Thus, there is often an issue that bond failure occurs before shear failure depending on the arrangement of shear reinforcing bars. It is a common practice to set sub-ties for the transverse confinement of the main re-bars as a method to prevent the bond failure. However, it can also become a factor in decreased work efficiency due to the complexity of the construction. This study experimented with simultaneous use of high-strength transverse reinforcing bars ($f_{wy}=800MPa$) and U-shaped transverse reinforcing bars of regular strength ($f_{wy}=300MPa$) in an attempt to decrease the necessary quantity of shear reinforcing bars. The effect of this attempt was investigated through fundamental experimental research in terms of the improvement in shear resistance and bond strength as well as the ease of construction.

  • PDF

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

콘크리트 기둥과 철골 보 합성골조 접합부에서의 지압강도 (Bearing Strength of Concrete Column and Steel Beam Composite Joints)

  • 김병국;이원규;최완철
    • 콘크리트학회논문집
    • /
    • 제15권3호
    • /
    • pp.417-424
    • /
    • 2003
  • 철근콘크리트 기둥-철골보(RCS)합성골조 접합부에서 지압 거동을 평가하고 지압설계를 위하여 단순화한 국부지압 실험을 수행하였다. 편심하중에 의해 국부지압을 받을 때 콘크리트의 쐐기작용과 띠철근의 횡구속 효과에 의해 저항된다. 실험결과 U형 지압보강근은 지압내력을 철근 강도만큼 증가시키면서 상세와 설치가 단순하여 효과적으로 나타났다. 띠철근 양에 따라 지압강도가 증가하며 이중 띠철근이 더욱 효과적으로 약20% 증가된다. 현행 ASCE설계지침에서 띠철근 규정은 지압내력이 2 $f_{ck}$ 가 되기 위해서는 다소 미흡하며, 지압강도는 띠철근과 이중 띠철근을 증가시킴에 따라 최대한 2.5 $f_{ck}$ 까지 사용할 수 있다. 본 연구의 결과로서 RCS 보기둥 접합부의 지압내력 추정을 위한 예측식이 제안되었으며 실험결과와 비교적 잘 일치되고 있다.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Enhancing the Seismic Performance of Multi-storey Buildings with a Modular Tied Braced Frame System with Added Energy Dissipating Devices

  • Tremblay, R.;Chen, L.;Tirca, L.
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.21-33
    • /
    • 2014
  • The tied braced frame (TBF) system was developed to achieve uniform seismic inelastic demand along the height of multi-storey eccentrically braced steel frames. A modular tied braced frame (M-TBF) configuration has been recently proposed to reach the same objective while reducing the large axial force demand imposed on the vertical tie members connecting the link beams together in TBFs. M-TBFs may however experience variations in storey drifts at levels where the ties have been removed to form the modules. In this paper, the possibility of reducing the discontinuity in displacement response of a 16-storey M-TBF structure by introducing energy dissipating (ED) devices between the modules is examined. Two M-TBF configurations are investigated: an M-TBF with two 8-storey modules and an M-TBF with four 4-storey modules. Three types of ED devices are studied: friction dampers (FD), buckling restrained bracing (BRB) members and self-centering energy dissipative (SCED) members. The ED devices were sized such that no additional force demand was imposed on the discontinuous tie members. Nonlinear response history analysis showed that all three ED systems can be used to reduce discontinuities in storey drifts of M-TBFs. The BRB members experienced the smallest peak deformations whereas minimum residual deformations were obtained with the SCED devices.

장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 파괴거동 (Failure Behavior of Octagonal Flared RC Columns Using Oblong Hoops)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.58-68
    • /
    • 2014
  • 횡방향철근은 기둥의 소성힌지구간에 충분한 구속효과, 축방향철근의 좌굴방지와 연성거동을 확보하기 위해 적용된다. 기둥에서 사각형 후프 띠철근과 보강 띠철근의 조립 및 배근방법은 시공이 까다롭고 많은 횡방향철근량이 요구된다. 본 논문에서, 이러한 문제점들을 해결하기 위하여 장방형 단면과 플레어 기둥의 횡구속을 위한 장방형 후프 띠철근을 사용한 새로운 횡구속 방법이 제안되었다. 팔각 장방형 단면에 대한 실험적 연구는 플레어 기둥의 강축에 대해 수행되었다. 장방형 띠철근을 적용한 횡구속 방법은 만족할 만한 횡구속 성능을 나타내었다. 개발된 장방형 후프 띠철근 상세는 장방형 단면과 플레어 기둥의 시공성과 경제성을 향상시켜줄 수 있는 하나의 대안으로서 적용 가능한 것으로 판단된다.