• 제목/요약/키워드: steel sheet thickness

검색결과 204건 처리시간 0.029초

박판 강재의 고속 심 용접성에 미치는 Sn 도금의 영향 (Effect of Tin Coating on the High Speed Seam Weldability of Thn Gage Sheet Steels)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.86-92
    • /
    • 1998
  • High speed wire seam weldability of tin coated thin gage sheet steels was investigated. Thickness and coating weight ranges of the test materials were 0.21~0.35mm and 1.1/1.1~2.8/11.2g/$m^2$, respectively. Test results indicated that the surface roughness value, Rz decreased as increasing the coating weight. The Rz was thought to be one of the important factors to influence the optimum welding condition range, $\triangle$Q. The $\triangle$Q showed close relationship with welding conditions such as welding pressure and travel speed. Higher welding pressure widened the $\triangle$Q while higher travel speed reduced the $\triangle$Q value. Results also demonstrated that tin coating weight should be optimized based on the weldability or the serviceability after welding. At th HAZ of sheet materials with thinner coating layer, tin depleted zone was produced since molten film of the coating material on the base metal agglomerated by the surface tension, which could result in reducing the corrosion resistance of the HAZ in the service environment.

  • PDF

304 스테인리스 박강판 IB형 점용접이음재의 피로강도 평가 Part 1 : 최대 주응력에 의한 평가 (Fatigue Strength Evaluation on the IB-Type Spot-welded Lap Joint of 304 Stainless Steel Part 1 : Maximum Principal Stress)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.25-31
    • /
    • 1999
  • Stainless steel sheets are commonly used for vehicles such as the bus and the train. These are mainly fabricated by spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget. edge of the spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget edge of the spot-welding point. Especially, it is influenced by welding conditions as well as geometrical factors of spot welded joint. Therefore, it is not too much to say that structural rigidity and strength of spot-welded structures is decided by fatigue strength of spot welded lap joint. Thus, it is necessary to establish a reasonable and systematic long life design criterion for the spot-welded structure. In this study, numerical stress analysis was performed by using 3-dimensional finite element model on IB-type spot-welded lap joint of 304 stainless steel sheet under tension-shear load. Fatigue tests were also conducted on them having various thickness, joint angle, lapped length, and width of the plate. From the results, it was found that fatigue strength of IB-type spot-welded lap joints was influenced by its geometrical factors, however, could be systematically rearranged by maximum principal stress ({TEX}$σ_{1max}${/TEX}) at the nugget edge of the spot-welding point.

  • PDF

스프링백 저감을 위한 초고강도강의 국부적 연화 열처리에 따른 미세조직과 기계적 특성 변화에 관한 연구 (Effect of Local Softening for Spring-back Reduction of Ultra High Strength Steel on Microstructure and Mechanical Properties)

  • 박상언;박병학;오명환;강범수;구태완
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.134-141
    • /
    • 2021
  • In order to improve excessive spring-back behavior as a result of the roll forming process using ultra high strength steel (UHSS) sheet, local softening in region of a partial area expected to be deformed on an initial blank is considered in this study. With SPFC1470 UHSS sheet with initial blank thickness of 1.20mm, the local softening is performed with the following conditions: temperatures of 500℃, 550℃, 600℃ and 650℃, and holding time of 20s, 40s, 80s and 160s. Mechanical properties, such as yield stress and tensile strength, as well as elongation, are evaluated through uniaxial tensile tests, while the microstructural characteristics as a result of local softening are also investigated using the heat-treated specimens. As a result, it is shown that the spring-back behavior of the roll-formed prototype was reduced about by 78.9%, when the local softening at about 500℃ was performed for 160s considering the practical manufacturing condition.

화학기상증착에 의한 Fe-6.5wt%Si철심재료의 특성평가 (Characteristics of Fe-6.5wt%Si Core Material by Chemical Vapor Deposition Method)

  • 윤재식;김병일;박형호;배인성;이상백
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.512-518
    • /
    • 2001
  • 6.5wt%Si강판을 낮은 철손실, 고투자율 그리고 자왜가 거의 0으로 우수한 자성재료로 잘 알려져 있다. 본 실험에서는 화학기상증착 (Chemical Vapor Deposition)으로 6.5wt%Si 강판을 만들었다 이 과정은 튜브 노내에서 실리콘의 함량이 낮은 Si강판에 SiCl$_4$가스를 반응시킨다. 이때 SiCl$_4$가스에서 분해된 Si의 원자들은 모재인 강판 표면에 증착되어 표면층에 Si가 풍부한 층을 형성한다. 마지막으로 고온에서 확산과정을 통하여 모재 내부로부터 실리콘의 함량이 균일한 강판을 얻을 수 있다. 0.5mm두께를 갖은 6.5wt%Si 강판의 철손실은 고주파수에서 약 8.92W/kg를 나타냈으며 투자율은 53,300으로 일반 실리콘강판, 즉 2.5wt%Si강판의 투자율 37,100보다 약 두배 가량 증가하였다. 또한 기계적인 특성을 평가하기 위해서 일반 0.5wt%Si강판과 773K의 온도에서 수시간 열처리한 강판을 인장실험 하였다. 따라서 수 시간 열처리한 시편에서 연신율이 증가함을 알 수 있었으며 파단면을 관찰한 결과 입 계파단면이 현저히 감소했음을 알았다

  • PDF

Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments

  • Chen, Chun-Sheng;Liu, Fwu-Hsing;Chen, Wei-Ren
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.251-261
    • /
    • 2017
  • In this paper, thermal effect on the vibration and stability of initially stressed sandwich plates with functionally graded material (FGM) face sheets is analyzed. Material properties of FGM face sheet are graded continuously in the thickness direction. The variation of FGM properties assumes a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of arbitrarily initially-stressed sandwich plates including the effects of transverse shear deformation and rotary inertia are derived. The initial stress is taken to be a combination of a uniaxial extensional stress and a pure bending stress in the examples. The eigenvalue problems are formed to study the vibration and buckling characteristics of simple supported initially stressed FGM/metal/FGM plates. The effects of volume fraction index, temperature rise, initial stress and layer thickness of metal on the natural frequencies and buckling loads are investigated. The results reveal that the volume fraction index, initial stresses and layer thickness of metal have significant influence on the vibration and stability of sandwich plates with FGM face sheets.

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta;Mohammadimehr, M.;Arani, A. Ghorbanpour
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.753-767
    • /
    • 2019
  • Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

합금화 용융아연 도금강판의 강성분, 소둔 및 합금화 열처리가 소부경화성에 미치는 영향 (Effects of Steel Chemistry, Annealing and Galvannealing Conditions on Bake Hardenability of Hot-Dip Galvannealed Sheet Steels)

  • 이호종;김종상
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.247-257
    • /
    • 2001
  • In an effort to improve the dent resistance of exterior body panels at a reduced steel thickness, the bake hardenable steels added Ti or Nb with tensile strength of 35Kgf/$\textrm{mm}^2$ were investigated. The bake hardenability increased with the annealing temperature and solute carbon content. Bake hardening of 3 to 5Kgf/$\textrm{mm}^2$ was obtained in steels with a controlled solute carbon concentration range from 6 to 10ppm. The galvannealing temperature and time had little influence on the bake hardenability. The Fe-Zn alloying reaction of 35Kgf/$\textrm{mm}^2$ BH steel was remarkably retarded due to a 0.07%P addition. The optimum galvannealing temperatures of 35Kgf/$\textrm{mm}^2$ BH steel were ranged from 520 to 56$0^{\circ}C$ in view of the Fe content and powdering resistance. The cross-section and planar views of the galvannealed coatings to characterize morphology development were discussed.

  • PDF

소재강도와 두께가 파이프 굽힘변형의 꺽임발생 거동에 미치는 영향 (The Effects of Sheet Strength and Thickness on Bending Behavior of Steel Pipes)

  • 박기철;이형진
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2071-2081
    • /
    • 1995
  • In order to examine the effects of yield stress, tensile strength and thickness on the buckling behavior during bending of pipes, the nonlinear finite element analysis of the 3-point bending tests was carried out using the commercial software (ABAQUS) under the condition of L4(2$^{3}$) performed according to the designed condition. Form the analysis of simulation results, it was found that yield stress and thickness were the major factors on buckling load at pipe bending and tensile strength gave little influence because the plastic strain and plastic zone are small. For the punch displacement to the occurrence of buckling, thickness is a major factor and yield stress and tensile strength are the minor factors.

Effect of Surface Roughness, Thickness and Current Density on Surface Resistance of Electro-deposited Copper Layer

  • Kim, Y.M.;Cho, S.K.;Choi, Y.;Lee, J.Y.;Kim, M.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.179-179
    • /
    • 2013
  • Surface resistance of electro-deposited copper with its thickness, current density and surface roughness was determined by using a 4-point probe analyzer. The copper was prepared electrochemically on 316 stainless steel substrate in copper sulfate solution at the condition of $1A/dm^2$, 298 K, and 6.5 cm-electrode distance. The surface resistance of the copper sheet in the range of $0.93-0.97{\Omega}$ increased with the copper thickness in the range of $21-70{\mu}m$. The surface resistance in the range of $0.963-1.009{\Omega}$ also increased with current density in the range of $0.5-2A/dm^2$. The increased surface resistances corresponded to 11% for thickness and 25% for current density, respectively.

  • PDF

레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구 (A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam)

  • 김재현;김도훈
    • 한국레이저가공학회지
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF