• Title/Summary/Keyword: steel plates

Search Result 1,478, Processing Time 0.025 seconds

Formulating the Local Displacement and Local Moments of a Plate Stiffened with Open Ribs According to the Dimensions of Stiffened Plates (보강판 제원에 따른 개단면 리브 보강판의 국부 처짐과 국부 모멘트의 정형화)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.659-670
    • /
    • 2012
  • The purpose of this study is to formulate the local displacement and moments of a plate stiffened with open ribs according to the dimensions of stiffened plates. Analyzed results of various plates stiffened with rectangular and reverse T ribs show that the effect of the lower flange to the local behavior is very small, so the local behavior can be expressed by ratio functions of the rib space, web thickness, web height and plate thickness and the ratio functions of rectangular and reverse T ribs can be unioned. The application of ratio functions to other types of stiffened plates shows that the increment of the error ratio is so small compared with examples of this study that the applicability of this study is proved.

A Simple Method of Obtaining Exact Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 간편한 고유진동수 해석방법)

  • Won, Chi Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by Kim in 1974. Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with shear deformation effects. In this paper, application of this method to the specially orthotropic laminated plates with various boundary condition is accomplished and the result of analysis is presented.

A Study of the Buckling/plastic Collapse Behaviour of Ship Plates with Secondary Buckling (2차좌굴을 포함하는 선체판의 탄소성거동에 관한 연구)

  • Ko, Jae-Yong;Lee, Don-Chul;Yu, Young-Hun;Cho, Young-Tae;Park, Sung-Hyeon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The plate bucking is very important design criteria when the ship is composed of high tensile steel plates. The structures under the action of excessive exhibit local failure associated with bucking until they reach the ultimate limit state as a whole. Precise assessment of the behaviour of plate above primary buckling load is important. In this connection, series of elastic plastic large deflection analyses are performed on rectangular plates with aspect ratio 1.4 applying the finite element method. In this paper, the buckling/plastic collapse behavior of ship plates with secondary buckling is investigated. It has found that the other deflection componentes also increase with the increase of compressive load above the primary buckling load.

Bending and Dynamic Characteristics of Antisymmetric Laminated Composite Plates considering a Simplified Higher-Order Shear Deformation (역대칭 복합적층판의 단순화된 고차전단변형을 고려한 휨과 동적 특성)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.601-609
    • /
    • 1997
  • Bending and vibration results for a laminated plate base on a simplified higher-order plate theory with four variables are presented. Assuming a constant in-plane rotation tensor through the thickness in Reddy's higher-order shear deformation theory it is shown that a simpler higher-order theory can be obtained with the reduction of one variable without significant loss in the accuracy. This simple higher-order shear deformation theory is then used for predicting the natural frequencies and deflection of simply-supported laminated composite plates. The results obtained for antisymmetrical laminated composite plates compare favorably with third-order and first-order shear deformation theory. The information presented should be useful to composite-structure designers, to researchers seeking to obtain better correlation between theory and experiment and to numerical analysts in checking out their programs.

  • PDF

Numerical Analysis of Welding Residual Stresses for Ultra-Thick Plate of EH40 Steel Joined by Tandem EGW (극후판 EH40 TMCP강재 Tandem EGW 용접부의 잔류응력 해석)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Byung-Jong;Yang, Yong-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.821-830
    • /
    • 2010
  • Deck plates and hatch coming of large container carrier and offshore structures are joined by ultra-thick plates whose thickness is more than 60mm. Traditionally FCAW has been used to join the thick plates in butt joint. However, FCAW has been replaced with EGW since the welding efficiency of EGW is higher than that of FCAW. Tandem EGW using two electrodes has been applied to vertical position welding by several shipyards. EGW requires one or two layers of bead whereas FCAW requires more than 20 layers of weld bead in thick welding. However, high welding residual stresses are generated by EGW since it uses higher heat input than FCAW. In the present study, a finite element model is suggested to predict the residual stresses induced by the tandem EGW. Butt specimen of EH40 TMCP shipbuilding steel plates vertical welding was modeled by a three-dimensional model. Residual stresses were measured by X-ray diffraction method and to verify the numerical result. The results show a good agreement with experimental result.

Free Vibration Characteristics of Rectangular Plates under Uniform Thermal Loading Part II. Experimental Modal Test (균일 열부가 하중을 받는 사각판의 자유 진동특성 연구 Part II. 고유진동 실험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • This paper was conducted on experimental analysis in the free vibration analysis of rectangular plates under uniform thermal loading. Materials of three rectangular plates were aluminum, steel and stainless-steel respectively. The dimension of rectangular plates was 0.1 $\times$ 0.1 $\times$ 0.002 m. Infrared quartz lamps were used for thermal loading. The PCS(Power Control System) electric control system was applied for control and scanning vibrometer (Poly Tech) was used for acquisition of frequency response function. Applied temperature was increased from room temperature to $300^{\circ}C$ by $50^{\circ}C$. Boundary condition was free-free condition using bungee cord. Front face of rectangular plate was heated uniformly.

Static and Fatigue Behavior Characteristics of Reinforced Concrete Beams Strengthened with CFRP Plate (CFRP Plate로 보강된 철근콘크리트 보의 정적 및 피로 거동 특성)

  • Kim, Kwang-Soo;Kim, Jin-Yul;Kim, Sung-Hu;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In the recent construction industry, Carbon Fiber Reinforced Polymers(CFRPs) have been highly considered as innovative strengthening materials for civil structures due to their superior material properties. This paper is to offer design data and strengthening efficiency of reinforced concrete beams strengthened with CFRP Plate. Static tests were carried out to evaluate failure modes and strengthening capacity. Displacements and strains of steel and CFRP plates were obtained and analyzed through a series of fatigue tests. Also, Those evaluated the energy dissipation. Results of the tests showed increase in strengthening ratios caused debonding failure at the end of beams. For the beams wrapped with CFRP sheets around the end of the plates, debonding failure mode that was induced from flexural cracks was indicated. Through the fatigue tests, it was observed that displacements, strains of steel and CFRP plates converged into certain values. It is also proved that the beams strengthened with CFRP plates are able to resist fatigue loading under serviceability.

Local Buckling in Steel Box Girder Bridge with Lifting and Lowering Support Method (지점 상승 하강 공법에 의한 강상자형교의 국부좌굴)

  • Koo, Min Se;Jeong, Jae Woon;Na, Gwi Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • The lifting and lowering supports method makes up for the weak points in the classical method and provides makes construction economical effect to construction. The application of pre-compression to continuous steel box girder bridges makes it possible to reduce the amount of steel, the height of girders and consequently, the cost consequentlyof the bridges' construction by through the process of concrete filling- up and the lifting-lowering of the inner supports. The lifting and lowering supports method is apt to cause local buckling in the lower flange and web plates by due to the process of the lifting of the inner supports. Therefore iln this study, therefore, the possibility of local buckling could be decreased, in consideration of the lifting force and the buckling strength of stiffened plates, by increasing the number of longitudinal stiffeners and the installation of extended longitudinal stiffeners on the lower flange and the web plates in the range of positive moment.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates

  • Lakshmipathi, Jakkamputi;Vasudevan, Rajamohan
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2019
  • In the present study, the various dynamic properties of MWCNT embedded fiber reinforced polymer uniform and tapered composite (MWCNT-FRP) plates are investigated. Various configurations of a tapered composite plate with ply-drop off and uniform composite plate have been considered for the development of the finite element formulation and experimental investigations. First order shear deformation theory (FSDT) has been used to derive the kinetic and potential energy equations of the hybrid composite plates by including the effect of rotary inertia, shear deformation and non-uniformity in thickness of the plate. The governing equations of motion of FRP composite plates without and with MWCNT reinforcement are derived by considering a nine- node rectangular element with five degrees of freedom (DOF) at each node. The effectiveness of the developed finite element formulation has been demonstrated by comparing the natural frequencies and damping ratio of FRP composite plates without and with MWCNT reinforcement obtained experimentally. Various parametric studies are also performed to study the effect of CNT volume fraction and CNT aspect ratio of the composite plate on the natural frequencies of different configurations of CNT reinforced hybrid composite plates. Further the forced vibration analysis is performed to compare the dynamic response of the various configurations of MWCNT-GFRP composite plate with GFRP composite plate under harmonic excitations. It was observed that the fundamental natural frequency and damping ratio of the GFRP composite plate increase approximately 8% and 37% respectively with 0.5wt% reinforcement of MWCNT under CFCF boundary condition. The natural frequencies of MWCNT-GFRP hybrid composite plates tend to decrease with the increase of MWCNT volume fraction beyond 2% due to agglomeration of CNT's. It is also observed that the aspect ratio of the CNT has negligible effect on the improvement of dynamics properties due to randomly orientation of CNT's.