• Title/Summary/Keyword: steel piles

Search Result 231, Processing Time 0.025 seconds

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

An Evaluation of Flexural Strength of Hollow Concrete Filled FRP Tube Piles (중공형 콘크리트 충전 FRP Tube 말뚝의 휨강도 산정)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.204-211
    • /
    • 2022
  • In this study, Hollow Concrete Filled FRP Tube Pile(HCFFT Pile) was proposed as a model to utilize the advantages of composite piles and solve the problem of corrosion, which is a disadvantage of CFT piles, and a numerical analysis model was developed to analyze their behavior. The strain compatibility method was applied considering the damage plastic behavior of concrete, the yield plastic behavior of steel, and the elastic behavior of FRP. The flexural strength calculation equation of HCFFT piles was proposed considering the change of the FRP tube section according to the distance from the neutral axis. The flexural strength calculation equation, numerical analysis results, and experimental results were compared and analyzed to verify their adequacy. The results of this study can be used as basic data for the optimal design of various HCFFT piles using FRP.

Evaluation of Applicability of Steel-pipe Energy Piles Through Thermal Performance Test (TPT) (현장 열성능 평가시험을 통한 강관 에너지파일의 적용성 평가)

  • Lee, Seokjae;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • A novel steel-pipe energy pile is introduced, in which the deformed rebars for main reinforcing are replaced with steel pipes in a large diameter cast-in-place energy pile. Here, the steel pipes act as not only reinforcements but also heat exchangers by circulating the working fluid through the hollow hole in the steel pipes. Under this concept, the steel-pipe energy pile can serve a role of supporting main structures and exchanging heat with surrounding mediums without installing additional heat exchange pipes. In this study, the steel-pipe energy pile was constructed in a test bed considering the material properties of steel pipes and the subsoil investigation. Then, the thermal performance test (TPT) in cooling condition was conducted in the constructed energy pile to investigate thermal performance. In addition, the thermal performance of the steel-pipe energy pile was compared with that of the conventional large diameter cast-in-place energy pile to evaluate its applicability. As a result, the steel-pipe energy pile showed 11% higher thermal performance than the conventional energy pile along with much simpler construction processes.

An Experimental Study of Piled Raft Footing on Loose Sands (느슨한 모래지반에서의 말뚝지지 전면기초에 대한 실험적 연구)

  • Kwon, Oh-Kyun;Lee, Whoal;Lee, Seung-Hyun;Oh, Se-Boong;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper the model tests have been conducted and the results are compared with those by the theoretical methods to study the behaviors of the piled raft. The size of model box is 2.2m${\times}$2m${\times}$2m. The raft is made of rigid steel plate and piles made of steel pipes. Generally the bearing capacity of group piles is designed with only the pile capacities, and the bearing capacity of raft is ignored. But the uncertainty of pile-raft-soil interaction leads to conservative design ignoring the bearing effects of raft. In the case of considering the bearing capacity of raft, the simple sum of bearing capacity of raft and that of each pile cannot be the bearing capacity of piled raft. Because the pile-raft-soil interaction affects the behavior of piled raft. Thus the effects of pile-raft-soil interaction are very important in the optimal design. In this paper, the behaviors of piled raft are studied through model tests of 2${\times}$2, 2${\times}$3, and 3${\times}$3 pile groups. The spacing between piles is changed in the model tests. And the behaviors of free standing and piled raft are also studied.

  • PDF

A Practical Procedure for the Design Optimization of Pile-type Substructure in a Mooring Dolphin (계류돌핀의 말뚝형 하부구조에 대한 실용적 설계 최적화 과정)

  • Ryu, Yeon-Sun;Lee, Nary;Kim, Jeong-Tae;Cho, Hyun-Ma
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 2000
  • In this paper, a practical procedure for the design optimization of tubular-steel-pile-type substructure in a mooring dolphin is investigated and numerically evaluated. In the finite-dimensional optimum design formulation, geometry and cross-sectional shapes of classified group of piles are identified as design variables. The design objective is the total weight of piles, and the design constraints on stresses, penetration depth, and size limits are imposed. Several classes of practical design alternatives are sought through the linking and fixing of design variables. Among the available numerical optimization codes, both PLBA program and DNCONF subroutine in IMSL library are used. They are based on SQP algorithm and relatively easy to get. A dolphin of numerical example has 20 tubular steel piles, 4 vertical and 16 inclined. Optimum designs for different cases are successfully obtained for the practical purpose.

  • PDF

Reliability Updates of Driven Piles Using Proof Pile Load Test Results (검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

Application of Electromagnetic Wave for Evaluating Necking Defects in Bored Piles (현장타설말뚝의 네킹 결함 평가를 위한 전자기파의 적용성 연구)

  • Lee, Jong-Sub;Song, Jung Wook;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The objective of this study is to demonstrate the suitability of electromagnetic waves for evaluating necking defects in bored piles using electromagnetic waves. Experiments are conducted with small-scaled defective model pile with diameter of 150 mm and length of 270 mm. Two necking defects are generated at the upper and lower positions on two different sides of the model pile, respectively. The other two necking defects are generated at the upper and lower positions on the same side of the model pile. Electrical wires are installed alongside the stainless steel wire of a steel cage to configure a two-conductor transmission line. A time-domain reflectometer is used to generate and defect electromagnetic waves. The experimental results show that electromagnetic waves are reflected at the necking defects and the end of the model pile. In addition, calculated defect locations are almost the same as actual defect locations. This study demonstrates that electromagnetic waves can be effective tool for evaluating necking defects in bored piles.