• Title/Summary/Keyword: steel pier

Search Result 154, Processing Time 0.032 seconds

Aseismatic Retrofit of Concrete Piers with Restraining Steel Ring and Expansive Concrete (구속강판과 팽창콘크리트를 이용한 기존 RC 교각의 내진 보강)

  • 최익창;박홍용;연준희;김연수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.953-958
    • /
    • 2001
  • A retrofit method “Steel Ring Confinement Retrofit” was proposed and discussed on the material and member characteristics through experiments. Steel Ring Confinement Retrofit consist of confining steel ring and expansive concrete. The steel ring is set on the footing, surrounding the base of the pier. By placing expansive concrete between the pier and steel ring, chemical prestress is introduced in the members. Chemical prestressed ring concrete enlarge the pier section and enhance both the strength and ductility of the pier. It was confirmed that Various Ring Confinement Retrofit improved the strength of the pier up to 30% ~ 100% with experiments.

  • PDF

Experimental studies of circular composite bridge piers for seismic loading

  • Chen, Sheng-Jin;Yang, Kuo-Chen;Lin, K.M.;Wang, C.C.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.261-273
    • /
    • 2012
  • This study proposes and examines a circular composite bridge pier for seismic resistance. The axial and flexural strengths of the proposed bridge pier are provided by the longitudinal reinforcing bars and the concrete, while the transverse reinforcements used in the conventional reinforced concrete pier are replaced by the steel tube. The shear strength of this composite pier relies on the steel tube and the concrete. This system is similar to the steel jacketing method which strengthens the existing reinforced concrete bridge piers. However, no transverse shear reinforcing bar is used in the proposed composite bridge pier. A series of experimental studies is conducted to investigate the seismic resistant characteristics of the proposed circular composite pier. The effects of the longitudinal reinforcing bars, the shear span-to-diameter ratio, and the thickness of the steel tube on the performance of strength, ductility, and energy dissipation of the proposed pier are discussed. The experimental results show that the strength of the proposed circular composite bridge pier can be predicted accurately by the similar method used in the reinforced concrete piers with minor modification. From these experimental studies, it is found that the proposed circular composite bridge pier not only simplifies the construction work greatly but also provides excellent ductility and energy dissipation capacity under seismic lateral force.

Bearing capacity of an eccentric tubular concrete-filled steel bridge pier

  • Sui, Weining;Cheng, Haobo;Wang, Zhanfei
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.285-295
    • /
    • 2018
  • In this paper, the bearing capacity of a non-eccentric and eccentric tubular, concrete-filled, steel bridge pier was studied through the finite element method. Firstly, to verify the validity of the numerical analysis, the finite element analysis of four steel tube columns with concrete in-fill was carried out under eccentric loading and horizontal cyclic loading. The analytical results were compared with experimental data. Secondly, the effects of the eccentricity of the vertical loading on the seismic performance of these eccentrically loaded steel tubular bridge piers were considered. According to the simulated results, with increasing eccentricity ratio, the bearing capacity on the eccentric side of a steel tubular bridge pier (with concrete in-fill) is greatly reduced, while the capacity on the opposite side is improved. Moreover, an empirical formula was proposed to describe the bearing capacity of such bridge piers under non-eccentric and eccentric load. This will provide theoretical evidence for the seismic design of the eccentrically loaded steel tubular bridge piers with concrete in-fill.

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Seismic fragility of a typical bridge using extrapolated experimental damage limit states

  • Liu, Yang;Paolacci, Fabrizio;Lu, Da-Gang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.599-611
    • /
    • 2017
  • This paper improves seismic fragility of a typical steel-concrete composite bridge with the deck-to-pier connection joint configuration at the concrete crossbeam (CCB). Based on the quasi-static test on a typical steel-concrete composite bridge model under the SEQBRI project, the damage states for both of the critical components, the CCB and the pier, are identified. The finite element model is developed, and calibrated using the experimental data to model the damage states of the CCB and the bridge pier as observed from the experiment of the test specimen. Then the component fragility curves for both of the CCB and the pier are derived and combined to develop the system fragility curves of the bridge. The uncertainty associated with the mean system fragility has been discussed and quantified. The study reveals that the CCB is more vulnerable than the pier for certain damage states and the typical steel-concrete composite bridge with CCB exhibits desirable seismic performance.

Behaviors of Internally Confined Hollow Reinforced Concrete Piers by Thickness of Internal Steel Tube (내부 강관 두께에 따른 내부 구속 중공 RC 교각의 거동)

  • Choi, Jun-Ho;Han, Taek-Hee;Yi, Gyu-Sei;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.333-338
    • /
    • 2007
  • An infernally confined hollow reinforced concrete pier (ICH RC pier) is hollow RC pier which has a internal steel tube to enhance its ductility and stiffness by internal confinement. In this study, the internal steel tube were changed to investigate the behavior of ICH RC pier. The behavior of internally confined hollow reinforced concrete piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. As a result of analytical study, the usage of a minimum necessary thickness of the internal steel tube the most effective. The ICH RC pier has decrease of weight compare to Solid RC pier.

  • PDF

Seismic Evaluation of concrete-Filled Steel Piers with Secondary Reinforcement (보조보강재가 있는 콘크리트 충전 강교각의 내진성능 평가)

  • 박병기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.349-356
    • /
    • 2000
  • Strenght and ductility are major factors in the aseismic design of a bridge pier. In spite of good performance in both steel piers have not been used widely due to high cost. But with the filled-in concrete the steel pier have advantages compare to the steel pier only such as improved strength ductility fast construction small section and reasonable cost. In this paper concrete-filled steel piers are tested using quasi-static cyclic lateral load with constant axial load to evaluate the performance. The secondary reinforcement devices such as bolts corner plate and turn buckle are used inside of the piers to improve the ductility with minimum additional cost. Test results shows filled-in concrete and secondary reinforcement devices increase the strength and the ductility of the steel pier.

  • PDF

Seismic Upgrading of Existing Circular RC Pier with Steel Jacket (강판보강에 의한 운형 RC 교각의 내진성능 향상)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.341-348
    • /
    • 2000
  • The existing solid circular RC pier without seismic detailing is found to have poor ductility due to the premature bond failure of lap spliced longitudinal bars. The steel-jacket was introduced to prevent this unexpected type of failure. The nonlinear behavior and he seismic performance of the retrofitted pier were examined through the scale model test and compared with those of existing one. It is confirmed from the test results that the steel-jacket retrofitting can be used as an measure to improve seismic performance considerably.

  • PDF

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.