• Title/Summary/Keyword: steel girder

Search Result 906, Processing Time 0.027 seconds

A Study on Dynamic Behaviors of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부 후긴장 공법 적용에 따른 무도상 판형교의 동적거동 분석)

  • Choi, Dong-Ho;Choi, Jung-Youl;Choi, Jun-Hyeok;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.160-168
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of external post-tensioning method far steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis, field test and laboratory test fur the lateral dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the lateral dynamic response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease lateral acceleration and deflection on steel plate girder bridge for serviceability. And the external post-tensioning method reduce dynamic maximum displacement(about $10{\sim}24%$), the increase of dynamic safety is predicted by adopting external post-tensioning method. From the dynamic test results of the servicing steel plate girder bridge, it is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method The servicing steel plate girder bridge with external post-tensioning has need of the reasonable reinforcement measures which could be reducing the effect of lateral dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

Influence of PC Girder and Steel Girder on Stress Analysis for Maglev straight Track (PC Girder 및 Steel Girder가 자기부상열차 직선 궤도의 응력해석에 미치는 영향)

  • Rho K.S.;Lee J.M.;Cho H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.653-656
    • /
    • 2005
  • Maglev straight track composes of guide rail, back iron, power rail and girder. Above all, girder is important. So this study analyzes the influence of PC girder and steel girder on stress analysis fur Maglev straight track, and to study the stress analysis the finite element method is utilized.

  • PDF

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.

Monitoring of Atmospheric Corrosivity inside Steel Upper Box Girder in Yeongjong Grand Bridge

  • Li, SeonYeob
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.87-94
    • /
    • 2011
  • The typical corrosion prevention method inside the steel upper box girder in a suspension bridge involves the use of paints. However, in an effort to reduce environmental impact and cost, the suspension portion of the Yeongjong Bridge, Korea utilizes dehumidification systems to control humidity and prevent corrosion inside its box girder. Maintaining a uniform humidity distribution at the proper level inside the box girder is critical to the successful corrosion control. In this study, the humidity and the resultant atmospheric corrosivity inside the box girder of the Yeongjong Bridge was monitored. The corrosion rate of the steel inside the box girder was obtained using thin-film electrical resistance (TFER) corrosion sensors. Time-of-wetness (TOW) measurements and the deposition rates of atmospheric pollutants such as $Cl^{-}$ and $SO_{x}$ were also obtained. Classification of the atmospheric corrosivity inside the box girder was evaluated according to ISO 9223. As a result, no corrosion was found in the upper box girder, indicating that the dehumidification system used in the Yeongjong Bridge is an effective corrosion control method.

Life-Cycle Cost Optimization of Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost(LCC) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost and expected retrofit costs for strength, deflection and crack. To demonstrate the cost effectiveness of LCC design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to mote rational, economical and safer design.

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.

An Experimental Study for the Application of Steel Anchorage Zone in Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 강재 정착부 적용을 위한 실험적 고찰)

  • Kim, Jung-Ho;Lee, Sang-Yoon;Hwang, Yoon-Gook;Park, Kyung-Hoon;Oh, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.455-458
    • /
    • 2005
  • The Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which maximizes structural advantages of components (concrete, steel plate and tendon) and can be used to construct the middle or long span bridge with low-height girder. And recently, a continuous beam type of SCP Girder has been being developed to decrease size and self weight of girder in comparison with a simply-supported type. In this study, as part of developing the continuous beam type of SCP Girder, a new type of anchorage zone is proposed in order to address tendons effectively and decrease section size of SCP Girder efficiently. And also, the experimental test was carried out using a real scale specimen to examine the behavior of proposed anchorage zone.

  • PDF

Static Behavior of Prestressed Steel-Concrete Composite Girder (프리스트레스트 강합성 거더의 정적거동 평가)

  • Lee Pil-Goo;Kim Sung-Il;An Hae-Young;Moon Jong--Hoon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.240-245
    • /
    • 2005
  • There has been a strong demand on more economic and lower depth girder bridges for short and medium span range, PRECOM, which is a new type steel-concrete composite girder, has been developed to realize a more economic bridge system with a lower depth girder. In the PRECOM girder bridge, a steel plate girder is simply supported and then concrete form is hung to girder. Thus, the self-weight of the concrete is loaded to the steel girder. To increase the resistance of concrete in the lower casing against tensile stress, compressive force is introduced by prestressed tendon To evaluate the manufacturability and performances of the completed bridge, four 15-m girders and a bridge specimen with two 20m girders wvere constructed. The camber during the construction and introduction of an appropriate compressive force was evaluated. Dynamic data were obtained through the modal testing of the completed girders. Static loading test was also conducted to examine cracks and evaluate the decrease in stiffness and failure behavior under extreme conditions.

  • PDF

Elastic Shear Buckling Strength of Steel Composite Box Girder Web Panel (강합성 박스거더 복부판의 탄성전단강도 연구)

  • Kim, Dae-Hyeok;Han, Sang-Yun;Kim, Jung-Hun;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.30-37
    • /
    • 2013
  • It is same such as the provision of shear buckling strength of steel composite box girder web panel and plate girder web panel in Korea Highway Bridge Design Standards(2012). But the web panel of steel composite box girder is different from the web of plate girder in that the upper slab and lower flange are connected to the web. So a different shear behavior of the girders is expected. In this study, To calculate a reasonable elastic shear buckling strength of steel composite box girder web panel, ABAQUS program was used. The results from F.E.A and previous studies are compared. It is shown that the web shear buckling strength of steel composite box girder of Korea Highway Bridge Design Standards(2012) is the most conservative.