• Title/Summary/Keyword: steel frame structure

Search Result 562, Processing Time 0.03 seconds

Experimental Study on Dry Waterproofing Technology Using Synthetic Polymer Sheet Comprised of Synthetic Resin Metal Sheets and Tri-Layered Filler (합성수지 메탈시트와 3면겹침용 채움재가 공법화된 합성고분자계 시트를 이용한 건식화 방수기술에 대한 실험적 연구)

  • Koo, Ja-Ung;Kim, Bum-Soo;Lee, Jung-Hun;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.139-140
    • /
    • 2017
  • This technology employs a method of forming a single-ply PLUS waterproofing sheet layer comprised of applying a single-ply synthetic polymer layer on a vibrating structure (steel frame, RC) or an inclined surface by using a T joint lap-filling coil and an embedded metal coated sheet. The T - joint reinforcing lap-filling coil was used to block the ingress channel of the rainwater by applying the material in the vulnerable area where the three sides of the waterproof sheet overlapped. Conventional waterproofing techniques have a problem in that the waterproof sheet is pierced because the end portion of the waterproof sheet applied to the vertical portion is fixed by a nail, and the sealant applied to the end portion of the sheet cannot easily secure long-term waterproof durability due to the influence of the external environment. Therefore, the developed technology secured the waterproof durability against the vertical part by using the embedded metal sheet. In addition, automatic hot-air fusing is used to improve the quality of waterproof construction and point fixation method using fixed hardware. This is a technology that is not significantly restricted in the high degradation level regions of domestic waterproof construction environments in Korea such as low-temperature environment, wet floor.

  • PDF

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Study on Manufacturing Techniques of Bracket Mural Paintings of Daeungbojeon Hall in Naesosa Temple (내소사 대웅보전 포벽화 제작기법 연구)

  • Lee, Hwa Soo;Lee, Na Ra;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.557-568
    • /
    • 2018
  • The manufacturing techniques were studied by investigating a precise analysis on wall structure, features of materials and the painting layer of the bracket mural paintings at Daeungbojeon Hall in Naesosa temple. The wall frame is a single-branch structure, and The mural paintings are composed of 3 layers which are a support layer, a finishing layer and a painting layer. The support layer and the finishing layer are an earth wall that sand and clay such as Quartz, Feldspar, and etc. are mixed. The support and the finishing layers have a combination of medium particle sand and smaller than fine particle sand in the approximate ratios of 0.8:9.2 and 6:4, respectively. Therefore, the aforementioned ratio of sand with medium or large particles is relatively higher in the finishing layer than the support layer. As a result of a precise analysis on the painting layer, it has a relatively thick ground layer for painting which is maximum $456.15{\mu}m$ by using Celadonite or Glauconite and the paintings were colored by using pigments such as Atacamite, Kaolinite or Halloysite, Oxidized steel, and etc. on it. The manufacturing style and the painting techniques of an earth wall are included in the category of the Joseon Dynasty style that have been studied up to now, but the facts that the finishing layer has a high content of sand and a middle layer and chopped straw have not been identified. These are remarkable points in terms of structure and materials, and can be crucial in the evaluation of the state of conservation of mural paintings or preparation of a conservation plan.

Experimental Study on the Behavior of Building Hardware with Joint Details (접합 방법에 따른 하지철물 구조물의 거동에 관한 실험적 연구)

  • Hong, Seonguk;Kim, Seunghun;Baek, Kiyoul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.190-198
    • /
    • 2018
  • In recent years, non-welded building hardware has been installed by bolt assembly is used. The non-welded building hardware method can reduce accidents caused by welding, and can be constructed by bolt assembly, which can reduce labor costs and shorten the construction period. However, there is a need for a method to compensate for the occurrence of buckling at the time of construction. The purpose of this study is to evaluate the behavior of joints between steel pipe and fastener and to evaluate the behavior of joints of non-welded and welded hardware frame. As a result, it was found that the foundation steel structure without welded joints was deformed to a rotation angle of member much larger than the allowable interlayer displacement angle 0.01 to 0.02 required according to the seismic load rating in the seismic load resistance system.

Seismic Performance Evaluation of Concrete Anchors used in Power Plant Equipment by Shaking Table Tests (진동대 실험을 통한 발전기기용 콘크리트 앵커의 성능평가)

  • Lee, Sang-Moon;Jeon, Bub-Gyu;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • The main purpose of this study is to assess the safety of the fixed anchorages subjected to the seismic motion for an operating facilities in the actual power plant. Thus, the experimental study was conducted to investigate the load response in the event of an actual seismic to the anchorages of a nonstructural components. Since there are economic and spatial constraints to study nonstructural components that actually have various forms, alternative test specimens of steel frames with mass were built and the shaking table test was carried out. In order to evaluate the dynamic characteristics and seismic performance, the natural frequency of the target structure was identified through the shaking table test and then the load response characteristics of the anchorage were evaluated by generating an artificial seismic effect like actual seismic. Finally, the structural stiffness was reinforced by fixing the steel frame to the test specimen using bolts, thereby reducing the load transmitted to the anchorage. It will be carried out on the reliability verification of the experiments and areas that have not been carried out due to the site conditions through the analytical approach in the future.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History (철근콘크리트 보-기둥 접합부 해석모델)

  • 유영찬;서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of this study is to propose the analytical model for the hysteretic behavior of Reinforced Concrete bearn-column joints under various loading history. Discrete line elernents , YVith inelastic rotational spring was adopted to consider the movement of plastic hinging zone influenced by the details of longitudinal reinforcements. Also hysteretic model was constructed by excluding such variables which can not be utilized in dynamic analysis of Reinforced Concrete. structure that it will be adoptable in two-dimensional inelastic frame ardysis with 6-DOF. From the analysis of previous test results, it was found that stiffness deterioration caused by inelastic hysteretic loadings can be predicted by the functron of basic pinching coefficients, ductility ratio.and yield strength ratio of members. Strength degradation coefficients were newly proposed to explain the difference of inelastic behavior of members caused by spacing ratio of transverse steel and sectlon aspect ratio. The energy dissipation capacities calculated using the analytical model proposed in thls paper show a good agreements w~lh test results by an error of 10~20%.