• 제목/요약/키워드: steel fibrous

검색결과 56건 처리시간 0.02초

강섬유의 종류에 따른 강섬유보강 콘크리트의 강도 및 휨변형 특성에 관한 실험적 연구 (An Experimental Study on the Strengths and Flexural Deformation of Steel Fiber Reinforced Concrete According to the Steel Fiber-Type)

  • 박승범;김의성;홍석주;강형선;권혁준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.328-334
    • /
    • 1996
  • This report is the results of an experimental study on the relative effectiveness of different types of steel fiber in concrete. The fibers considered in the study were straight-indent and hooked-collated with aspect ratios of about 50~100. A fiber volume of 0~2 percent was used throughout this investigation. The fresh fibrous mixes were characterized by the slump and vebe-time, and the hardened materials by their compressive and flexural load-deflection relationships. Hooked fibers were found to be more effective than straight ones in improving the strength and energy absorption of concrete.

  • PDF

강섬유를 혼입한 철근콘크리트 보의 전단기둥에 관한 실험적 연구 (An experimental Study on Shear Behavior of Reinforced Concrete Beams With Steel Fibrous)

  • 배주성;김경수;김재욱;최일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.557-560
    • /
    • 1999
  • In civil engineering and construction field, recently the great enhancement of new material and building technique have been made by many studies and reports. These studies have attracted many countries, since 1980's those study on reinforcement with steel fiber have been done by America, Japan and the other countries. Designs and proposals on building method have been applied, several universities and laboratory centers in our country have been studied, but the study on field application is short. Also a part of study on the shear behavior of reinforced concrete beams with steel fiber has accomplished. but up to this time, reliable establishment is undone. Therefore, this study is performed the static loading test to analysis shear failure behavior in reinforced concrete beams with steel fiber. we have observed the limit load of shear force, primary bending crack load, primary diagonal crack load, evaluating relative of load and steel, crack increase and failure shape according to increase of load. Through the exam and the observation of output, we estimate the shear failure behavior of SFRC beams according to fiber mixing amount.

  • PDF

강섬유 보강 고강도 콘크리트 보의 전단강도 추정식(구조 및 재료 \circled2) (Deduction Equation of Shear Strength of Steel Fiber Reinforced High Strength Concrete Beams)

  • 조선정;박종건;곽계환
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.253-258
    • /
    • 2000
  • The purpose of this paper is to propose the deduction equation of shear strength of high strength reinforced concrete beams input steel fibrous. To propose the deduction equation of shear strength, we studied high reasonable verification by comparing proposal equation with other researches such as equation of ACI code 318-95 or equation of Zsutty. To propose the deduction equation of shear strength, regression analysis was done using MINITAP program. Finally, it has been tried to make an improvement of brittleness quality of high strength concrete which has been weak points and it is convinced the result by increase of deflection and strain about loads.

  • PDF

The effect of acid environment and thawing and freezing cycles on the mechanical behavior of fiber-reinforced concrete

  • A.R. Rahimi Chakdel;S.M. Mirhosseini;A.H. Joshagani;M.R.M. Aliha
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.481-492
    • /
    • 2024
  • This research examined the mechanical behavior of fiber-reinforced concrete at unstable environmental conditions. Concrete composites with varying percentages of steel and glass fibers were analyzed. Compressive, indirect tensile, and fracture toughness properties were evaluated using the Edge Notched Disc Bend (ENDB) test under freezing-thawing and acidic environments and the results were compared with normal conditions. Steel fibers decreased the strength in the specified cycles, while glass fibers showed a normal strength trend. The compressive, tensile and fracture toughness of the samples containing 1.5 vol.% fibers showed a 1.28-, 2.13- and 4.5-fold enhancement compared to samples without fibers, after 300 freezing-thawing cycles, respectively.

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

Compressibility behaviour of peat reinforced with precast stabilized peat columns and FEM analysis

  • Kalantari, Behzad;Rezazade, Reza K.
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.415-426
    • /
    • 2015
  • Researches have been done to discover ways to strengthen peat soil deposits. In this model study, fibrous peat that is the most compressible types of peat has been reinforced with precast peat columns stabilized with ordinary Portland cement and polypropylene fibres. Rowe cell consolidation tests as well as plate load tests (PLTs) were conducted on various types of test samples to evaluate the strength and deformation of untreated peat and peat reinforced by various types of columns. PLTs were conducted in a specially designed and fabricated circular steel test tank. The compression index ($C_c$) and recompression index ($C_r$) of fibrous peat samples reduced considerably upon use of precast columns. Also, PLT results confirmed the results obtained from Rowe cell tests. Use of polypropylene fibres added to cement further decreased ($C_c$) and ($C_r$) and increased load bearing capacity of untreated peat. Finite element method (FEM) using Plaxis 3D was carried out to evaluate the stress distributions along various types of tested samples and also, to compare the deformations obtained from FEM analysis with the actual maximum deformations found from PLTs. FEM results indicate that most of the induced stresses are taken on the upper portion of tested samples and reach their maximum values below the loading plate. Also, a close agreement was found between actual deformation values obtained from PLTs and values resulted from FEM analysis for various types of tested samples.

교정용 스테인리스강선재의 물리적 성질에 관한 비교연구 (A COMPARATIVE STUDY ON PHYSICAL PROPERTIES OF ORTHODONTIC STAINLESS STEEL WIRES)

  • 권오원;손병화
    • 대한치과교정학회지
    • /
    • 제15권2호
    • /
    • pp.163-174
    • /
    • 1985
  • The requirements of orthodontic wire should include chemical stability, non-discoloration and non-corrosion in oral environment. Ability to be soldered, ease of fabrication and elasticity should be also considered. The purpose of this study was to compare and analyze the physical properties of Tru-chrome wire and manufactured E.S.S. (Experimental Stainless Steel) wire similar to Tru-chrome. The results were as follows: 1. Tru-chrome wire and E.S.S. wire were SUS 304 which was 18 Cr-8Ni austenite stainless steel. There was not significant difference in each composition between two wires. 2. There were not significant differences in ultimate tensile strength, yield strength, elongation and modulus of elasticity between Tru-chrome and E.S.S. wires. 3. There was not significant difference between flexuree modulus of elasticity of Tru-chrome and E.S.S. wires. 4. Micro-hardness value of E.S.S. wire was more than that of Tru-chrome wire and they were softened significantly by solution heat reatment. 5. Micro-structure of Tru-chrome and E.S.S. wires showed fibrous interlocking grains, and an austenite structure after solution heat treatment. 6. There was significant difference between corrosion rate of Tru-chrome and E.S.S. wires.

  • PDF

Application of frictional sliding fuse in infilled frames, fuse adjustment and influencing parameters

  • Mohammadi-Gh, M.;Akrami, V.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.715-727
    • /
    • 2010
  • An experimental investigation is conducted here to study the effects of applying frictional sliding fuses (FSF) in concrete infilled steel frames. Firstly, the influences of some parameters on the behavior of the sliding fuse are studied: Methods of adjusting the FSF for a certain sliding strength are explained and influences of time duration, welding and corrosion are investigated as well. Based on the results, time duration does not significantly affect the FSF, however influences of welding and corrosion of the constitutive plates are substantial. Then, the results of testing two 1/3 scale single-storey single-bay concrete infilled steel frames having FSF are presented. The specimens were similar, except for different regulations of their fuses, tested by displacement controlled cyclic loading. The results demonstrate that applying FSF improves infill behaviors in both perpendicular directions. The infilled frames with FSF have more appropriate hysteresis cycles, higher ductility, much lower deteriorations in strength and stiffness in comparison with regular ones. Consequently, the infills, provided with FSF, can be regarded as an engineered element, however, special consideration should be taken into the affecting parameters of their fuses.

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

Titanium Phosphide 표면에 대한 세포독성 및 골친화성의 평가 (Evaluation of cytotoxicity and bone affinity on the surface of a titanium phosphide)

  • 이강진;김천석;김형수;염창엽;김병옥;한경윤
    • Journal of Periodontal and Implant Science
    • /
    • 제27권2호
    • /
    • pp.329-346
    • /
    • 1997
  • Dental implants have been developed for enhancement of osseointegration. Biocompatibility, bone affinity and surface characteristics of dental implants are very important factors for osseointegration. The aim of the present study was to determine the cytotoxicity and the bone affinity of titanium phosphide(Ti-P) implant material. The Ti-P surface was obtained by vacuum sintering of titanium within compacted hydroxyapatite powder. The composition and the chemical change of the surface were determined by Auger electron spectroscopy. The in vitro cytotoxicity was evaluated by the viability of the bone cells and macrophages obtained from chicken embryo and rat,s peritonium, respectively. For the comparative evaluation, 316L stainless steel, commercially pure titanium and Ti-P materials, prepared in size of 1O.0mm in diameter and 5.0mm in height, were immersed separately in bone cells and macrophages for 10 days. For the evaluation of the in vivo bone affinity, 316L stainless steel, commercially pure titanium and Ti-P materials, prepared in size of 5.0mm in diameter and 10.0mm in length, were implanted after drilling in diameter 5.5mm in femurs of 2 dogs weighing 10Kg more or less. Six weeks after implantation the specimens were prepared for histopathological examination and were observed under light microscope. In comparison of in vitro bone cell viability, Ti-P and commercially pure titanium groups were not significantly different from control group (p>O.1), but 316L stainless steel group was significantly lower than control group(p<0.05). There was no statistical difference in the viability of macrophages between 3 different groups and control group(p>O.l). In comparison of in vivo study, 316L stainless steel and commercially pure titanium showed fibrous encapsulation, but Ti-P showed remarkable new bone formation without any fibrous tissue. The results demonstrate that Ti-P has favorable biocompatibility and bone affinity, and suggest that dental implants with Ti-P surface may enhance osseointegration.

  • PDF