• Title/Summary/Keyword: steel fiber-reinforced concrete

Search Result 1,083, Processing Time 0.029 seconds

A Basic Study of Production System Development of Free-form Concrete Panels (비정형 콘크리트 패널 생산 시스템 구축 기초연구)

  • Son, Seung-Hyun;Kim, Ki-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.70-71
    • /
    • 2019
  • Glass fiber reinforced concrete (GFRC) is very suitable as a material for free-form concrete panels (FCPs) because of its lightweight, strong, moldable, durable and sustainable properties. GFRC is superior in construction and maintenance compared with materials such as steel, aluminium, titanium, glass and plastic, and is advantageous in cost. However, GFRC is being produced by skilled craftsmen, and still lacks the technology to economically produce high quality FCPs. Currently, there is a technology to automatically and accurately produce FCPs. However, the developed technology can not be applied to the field with simple production technology without production line for mass production. To solve this problem, the purpose of this study is a basic study of production system development of free-form concrete panels. This study introduces the developed FCPs production technology and builds FCP production system for mass production. The results of this study will be used as basic data for the commercial production of FCPs in the future.

  • PDF

A comprehensive description for damage of concrete subjected to complex loading

  • Meyer, Christian;Peng, Xianghe
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.679-689
    • /
    • 1997
  • The damage of concrete subjected to multiaxial complex loading involves strong anisotropy due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks. A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic damage tenser. The evolution of damage is assumed to be related to the principal components of the current states of stress and damage. The unilateral effect of damage due to the closure and opening of microcracks is taken into account by introducing projection tensors that are also determined by the current state of stress. The proposed damage model considers the different kinds of damage mechanisms that result in different failure modes and different patterns of microdefects that cause different unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equation in which hardening and the triaxial compression caused shear-enhanced compaction can also be taken into account. The validity of the proposed model is verified by comparing theoretical and experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histories.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Model for fiber Cross-Sectional Analysis of FRP Concrete Members Based on the Constitutive Law in Multi-Axial Stress States (다축응력상태의 구성관계에 기초한 FRP 콘크리트 부재의 층분할 단면해석모델)

  • 조창근;김영상;배수호;김환석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.892-899
    • /
    • 2002
  • Among the methods for enhancement of load-carrying capacity on flexural concrete member, recently, a concept is being investigated which replaces the steel in a conventional reinforced concrete member with a fiber reinforced polymer(FRP) shell. This study focuses on modeling of the structural behavior of concrete surrounded with FRP shells in flexural bending members. A numerical model of fiber cross-sectional analysis is proposed to predict the stress and deformation state of the FRP shell and concrete. The stress-strain relationship of concrete confined by a FRP shell is formulated to be based on the constitutive law of concrete in multi-axial compressive stress state, in assuming that the compression response is dependent on the radial expansion of the concrete. To describe the FRP shell behavior, equivalent orthotropic properties of in-plane behavior from classical lamination theory are used. The present model is validated to compare with the experiments of 4-point bending tests of FRP shell concrete beam, and has well predicted the moment-curvature relationships of the members, axial and hoop strains in the section, and the enhancement of confinement effect in concrete surrounded by FRP shell.

The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites(UHPCC) (초고성능 시멘트 복합체의 압축강도에 대한 강섬유 보강 효과)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.110-118
    • /
    • 2010
  • This research dealt with the effect of steel-fiber reinforcement on the compressive strength of ultra high performance cementitious composites (UHPCC) and compared with that in normal steel-fiber reinforced concrete(SFRC). With wide range of compressive strength of UHPCC, experiments on the fiber reinforcement effect confirmed that the compressive strength in UHPCC is also improved by adding fibers as in normal SFRC. The experimental results were compared with previous researches about reinforcement effect by adding fibers, which are limited within 100MPa compressive strength. The comparison revealed the linear relationship between $f'_{cf}-f'_c$ and RI regardless of the magnitude of compressive strength, from which a general equation to express the effect of fiber reinforcement, applicable to various SFRC's with wide range of compressive strength including UHPCC.

Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRP

  • Providakis, C.P.;Triantafillou, T.C.;Karabalis, D.;Papanicolaou, A.;Stefanaki, K.;Tsantilis, A.;Tzoura, E.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.811-830
    • /
    • 2014
  • A numerical study has been carried out to simulate an innovative monitoring procedure to detect and localize damage in reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) unidirectional laminates. The main novelty of the present simulation is its ability to conduct the electromechanical admittance monitoring technique by considerably compressing the amount of data required for damage detection and localization. A FEM simulation of electromechanical admittance-based sensing technique was employed by applying lead zirconate titanate (PZT) transducers to acquire impedance spectrum signatures. Response surface methodology (RSM) is finally adopted as a tool for solving inverse problems to estimate the location and size of damaged areas from the relationship between damage and electromechanical admittance changes computed at PZT transducer surfaces. This statistical metamodel technique allows polynomial models to be produced without requiring complicated modeling or numerous data sets after the generation of damage, leading to considerably lower cost of creating diagnostic database. Finally, a numerical example is carried out regarding a steel-reinforced concrete (RC) beam model monotonically loaded up to its failure which is also retrofitted by a CFRP laminate to verify the validity of the present metamodeling monitoring technique. The load-carrying capacity of concrete is predicted in the present paper by utilizing an Ottosen-type failure surface in order to better take into account the passive confinement behavior of retrofitted concrete material under the application of FRP laminate.

Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method (Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • The objective of this study is to predict fracture movements accurately and reliably by nonlinear analysis of the response of RC shear wall or RC flange sections. Hognestad's and Vallenas's theories are used for concrete model and Ramberg-Osgood's theory is used for steel model. Non-linear analysis considering confined concrete and unconfined concrete is performed. Mander's Fiber Approach Section analysis, new strain profile considering the Gamma factor are used to this section analysis. The section analysis considering cases of precracked, uncracked, boundary warping and shear warping is performed.

Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar (부식된 FRP Hybrid Bar의 휨 내력 및 초음파 속도 특성)

  • Choi, Se-Jin;Mun, Jin-Man;Park, Ki-Tae;Park, Cheol-Woo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.397-407
    • /
    • 2015
  • Concrete is a attractive construction material, however durability problem occur due to steel corrosion, which leads propagation to structural safety problem. The recently developed FRP (Fiber Reinforced Plastic) Hybrid Bar has an engineering merit of both structural steel and FRP. Accelerated corrosion test for RC (Reinforced Concrete) samples with normal steel and FRP Hybriud Bar are performed and their flexural capacity is evaluated. Furthermore UV(Ultrasonic Velocity) measurement is attempted for analysis of variation of UV due to corrosion condition. After corrosion test, there is no significant reduction in RC beam with FRP hybrid bar but 11.5% of reduction in the case of normal steel is evaluated with 3.3% of UV reduction. For commercial production of FRP hybrid bar, bond strength evaluation through long-term submerged corrosion is required.

A Study on the Maximum Load of R/C Beams Strengthened by Carbon Fiber Sheets (탄소섬유시트로 보강된 R/C 보의 최대내력에 관한 연구)

  • Choi, Chang-Sik;Kim, Yong-Chae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.199-204
    • /
    • 2001
  • Recently, strengthening of structural members by adhesion of steel plate or fiber sheets is generally used. Particularly, the Carbon Fiber Sheets (CFS) is widely used. Rut, the strengthening effect of the CFS is not clearly define yet. Therefore, this paper is designed to evaluate the effectiveness of CFS methods by analyzing previous studies in statistics. According to the results, the maximum load carrying capacity is increased up to 0.16 times when the reinforced concrete beams were strengthened by CFS which is standard specimens. The number of sheets made some effect on the strength while, the other parameters influenced the ductile capacity.

  • PDF

Numerical analysis of large stud shear connector embedded in HFRC

  • He, Yu Liang;Zhang, Chong;Wang, Li Chao;Yang, Ying;Xiang, Yi Qiang
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.595-608
    • /
    • 2021
  • To investigate the mechanical behavior of large stud shear connector embedded in hybrid fiber-reinforced concrete (HFRC), a refined 3D nonlinear finite element (FE) model incorporating the constitutive model of HFRC was developed using ANSYS. Firstly, the test results conducted by the authors (He et al. 2017) were used to validate FE model of push out tests. Secondly, a total of 27 specimens were analyzed with various parameters including fiber volume fractions of HFRC, diameter of studs and HFRC strength. Finally, an empirical equation considering the contribution of steel fiber (SF) and polypropylene fiber (PF) was recommended to estimate the ultimate capacity of large stud shear connector embedded in HFRC.