• 제목/요약/키워드: steel fiber ratio

검색결과 507건 처리시간 0.029초

Permanent Shotcrete Tunnel Linings 구축을 위한 고성능 숏크리트 개발(III)(시멘트 광물계 분말형 급결제를 사용한 습식숏크리트 현장시험시공) (Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Linings (III) (Field Test of Wet-mixed Shotcrete with Powder Types Cement Mineral Accelerator))

  • 박해균;이명섭;김재권;김용하
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.609-617
    • /
    • 2003
  • The use of Shotcrete(Sprayed concrete) for the support of underground excavations was pioneered by the Civil engineering industry. Permanent shotcrete tunnel linings such as Single-shell, NMT(Norwegian Method of Tunnelling) have been constructed in many countries for reducing construction time and lowering construction costs instead of conventional in-situ concrete linings. Among essential technologies for successful application of Permanent Shotcrete Linings, high performance shotcrete having high strength, high durability, better pumpability has to be developed in advance. This paper presents the ideas and the first field test results of wet-mixed Steel Fiber Reinforced Shotcrete(SFRS) with powder types cement mineral accelerator. From the results, wet-mix SFRS with powdered accelerator exhibited good early strength improvement and less rebound ratio compared to the ordinary accelerator.

  • PDF

고기능성 시멘트계 복합재료 배합비 및 양생조건에 따른 휨부재의 거동 (Behavior of Engineered Cementitious Composite(ECC) Flexural Members Based on Mix Proportions and Curing Conditions)

  • 경민수;김동완;배병원;전경숙;임윤묵;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.361-366
    • /
    • 2003
  • Recently, construction materials have been guickly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-Mechanics based fiber concrete called Engineered Cement Composite (ECC) has been developed and studied extensively by many researchers in the field due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan and European countries have reached the point of being able to use ECC in actual constructions. But, due to the belated interest in the field, Korea is lagging behind the leading countries. ECC's ability to use its short fibers to bridge micro-cracks (50-80㎛ in width) allows great ductility and strength. ,In this study, ECC with superior material capacities are manufactured using domestic materials such as cement, silica sand, metal cellulose, etc. Using only domestic products, the optimal W/C ratio and mixing procedures are determined.

  • PDF

온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가 (Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment)

  • 양용준;국현;양인영
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.

철근콘크리트 교각 심부구속철근량의 비교연구 (comparative Study on confinement Steel Amount of RC Column Bent)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

반복하중을 받는 FRP 보강근의 부착성능에 대한 연구 (Research on the Bond Behavior of FRP Rebars subjected to Cyclic Loading)

  • 장문석;이정윤;박지선;박영환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.205-208
    • /
    • 2006
  • The use of Fiber Reinforced Polymer (FRP) bars has been gaining popularity in the civil engineering community, as an alternative material to steel reinforcement, for their noncorrosive nature and high strength-to-weight ratio. Good performance of reinforced concrete requires adequate interfacial bond between the reinforcing material and the concrete because the load applied must be transferred from the matrix to the reinforcement. Although studies on the FRP bond behavior under monotonic loading has been reported by many, there are very little work done under cyclic loading. In this paper, we present the experimental study on the bond behavior of three different types of FRP rebars subjected to four different cyclic loading conditions.

  • PDF

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Shear performance of reinforced concrete beams with rubber as form of fiber from waste tire

  • Ali Serdar Ecemis;Emrah Madenci;Memduh Karalar;Sabry Fayed;Sabry Fayed;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.337-349
    • /
    • 2024
  • The growing quantity of tires and building trash piling up in landfills poses a serious threat to the stability of the ecosystem. Researchers are exploring ways to reduce and use such byproducts of the construction industry in an effort to promote greener building practices. Thus, using recycled crumb rubber from scrap tires in concrete manufacturing is important for the industry's long-term viability. This study examines the proportion of waste rubber in fiber form, specifically at weight percentages of 5%, 10%, and 15%. Moreover, the study examines the shear behavior of reinforced concrete beams. A total of twelve RC beam specimens, each sized 100 mm by 150 mm by 1000 mm (w × d × L), were constructed and positioned to the test. Various mixtures were designed with different levels of scrap tire rubber content (0%, 5%, 10%, and 15%) and Stirrup Vol. Ratio (2.10, 2.80, and 3.53) in reinforced concrete beams. The findings indicate that the inclusion of scrap rubber in concrete leads to a decrease in both the mechanical characteristics and weight of the material. This is mostly attributed to the lower strength and stiffness of the rubberized concrete. Furthermore, estimations generated by a variety of design codes were examined alongside the obtained data. In order to make a comparison between the estimates provided by the different codes such as ACI 318-14, CEB-FIB and Iranian national building codes, a calculation was done to determine the ratio of the experimental shear strength to the anticipated shear strength for each code.

3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석 (Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory)

  • 이원홍;한성천;천경식;장석윤
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.97-107
    • /
    • 2003
  • 복합재료 적층판의 보다 정확한 해석결과를 얻기 위해서는 종방향 전단변형, 종방향 수직 변형률/응력에 의한 효과와 두께방향좌표에 관한 면내변위의 비선형 변화등이 고려되어야 한다. 본 연구에서는 3차원 고차이론을 이용하여 복합적층판의 좌굴하중 및 고유진동수를 구하였다. 단순지지된 적층판과 샌드위치의 해는 이중삼각함수형태의 Fourier 급수로 변환한 Navier 해법을 사용하였고, 일차전단변형, 고차전단변형이론에 의한 결과와 비교 분석하였다. 본 연구는 매개변수 즉, 보강각도, 적층수와 배열조건, 폭-두께비, 형상비의 변화에 따른 수치 해석 결과를 제시하였다.

적층판 해석시 형상비 증가에 따른 종방향 모멘트의 무시효과 (The Effect of Neglecting the Longitudinal Moment Terms in Analyzing Laminates with Increasing Aspect Ratio)

  • 한봉구;김덕현
    • 한국강구조학회 논문집
    • /
    • 제13권1호
    • /
    • pp.53-60
    • /
    • 2001
  • 건설관련 설계기술자들에게는 첨단 복합재료구조에 대한 이론이 너무 어려워서 간단하면서도 쉽게 적용할 수 있는 정확한 방법을 필요로 하고 있다. 몇 가지 섬유 배향각을 가진 적층판은 층수가 증가하면 D16, B16, D26 및 B26 강성이 감소하게 되어 특별직교이방성 판처럼 거동함을 밝히고, 간단한 공식들을 개발하여 발표한 바 있다. 대부분의 교량이나 건물의 상판은 형상비가 큰 경우가 많은데, 이런 구조물의 평형방정시에 대한 종방향 모멘트항(Mx)의 영향은 매우 작아서, 더욱 간단한 해석이 가능하다. 본 논문에는 이러한 문제들에 대한 연구 결과를 제시하였다.

  • PDF