• Title/Summary/Keyword: steel disk

Search Result 224, Processing Time 0.04 seconds

Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation (가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동)

  • Yu, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

The Fabrication and Characteristics of Small Disk-Type Ultrasonic Motor (소형 원판형 초음파 모터의 시작 및 특성)

  • Park, C.H.;Lee, J.S.;Jeong, S.H.;Chai, H.I.;Lee, K.W.;Kim, H.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1720-1722
    • /
    • 1999
  • In this paper, we studied the properties of small-size disk-type ultrasonic motor using travelling wave for the application to the precise control robotic joint motor and fabricated it. The diameter of the ultrasonic motor fabricated was 13mm. Also, the piezoelectric vibrator was constructed by piezoelectric ceramic and elastic material. The piezoelectric ceramic was composed to PZ-PT-PMN which was shown the high electromechanical stability under high vibration level and stainless steel was used as the elastic material in which configuration was disk-type. To conform the capability of application to robotic motor, we measured the change of rotational speed according to applied voltage and applied frequency. As the results, the small-size disk-type ultrasonic motor was able to fabricate, and the revolution speed was 350 [rpm] when input voltage was 55 [Vrms] and applied frequency 160.4 [kHz] under pre-load.

  • PDF

The Brake Performance of Sintered Friction Materials Developed for High Speed Trains (고속전철용 소결 복합재의 마찰 특성평가)

  • Chung, So-La;Hong, Ui-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.266-271
    • /
    • 2007
  • The brake performance of sintered friction materials for the high speed train was studied. In this study, newly developed sintered materials based on copper were compared with the commercial products for high speed trains. They were tested on a 1/5 scale dynamometer using low carbon steel disks. Effectiveness, fade, and recovery tests were carried out to examine friction performance and the change of disk thickness variation (DTV) during brake applications and noise propensity were also evaluated. Results showed that the two sintered friction materials exhibit similar friction coefficients and braking performance, whereas the newly developed friction material was superior in terms of DTV generation and noise propensity to the commercial friction material. The improvement of the newly developed friction material was attributed to the high graphite content which reduced the stick-slip phenomena and prevented uneven disk wear by producing friction films on the counter disk.

Laser Line Welder for Continuous Operation of Cold-rolled Steel Coil (초극박재 냉연코일의 연속조업을 위한 Laser Line Welder)

  • Choi, Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • A laser line welder using a solid-state laser (Yb:YAG) has been manufactured for joining ultra-thin cold-rolled steel coils in steelworks. The coils to be welded primarily range from 0.15 to 0.3 mm in thickness and 800 to 1,100 mm in width. Because the steel plate is extremely thin, it is very important to control the stop positions of the clamp at cutting and welding points. In this study, both hydraulic proportional control valves and LVDT sensor embedded cylinders were used to precisely control and monitor the positions of clamps with complementary stoppers. As a result, the positions could be controlled within an error of ${\pm}30{\mu}m$. Erichsen cupping tests on the welded joints show that the Erichsen index ranges from 4.4 to 4.6 mm. Furthermore, the tensile strength of welding points is comparable to that of the base metal.

Evaluation of high temperature tensile behavior and LCF properties of stainless steel for turbine disks (터빈 디스크용 스테인리스강의 고온 인장 및 저주기 피로 물성 측정)

  • Im, H.D.;Park, C.K.;Lee, K.;Rhim, S.H.;Kim, C.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.334-337
    • /
    • 2007
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue(LCF) behavior of stainless steel for turbine disks was studied at wide temperature range $20^{\circ}C\;{\sim}\;750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreased when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude, stress amplitude and plastic strain energy density was also investigated. Coffin-Manson and Morrow models were used to adjust experimental data and predict the fatigue life behavior at different mean strain values during cyclic loading of high temperature components.

  • PDF

Characteristics of Disk-type Linear Ultrasonic Motor for Application to x-y Stage

  • Lim Kee-Joe;Park Seong-Bee;Yun Yong-Jin;Lee Kee-Young;Kang Seong-Hwa;Lee Jong-Sub;Jeong Su-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 2006
  • In this paper, a disk-type ultrasonic motor using a combination of radial and bending vibration modes is newly designed and fabricated. The characteristics of the test motor are also measured. By means of traveling elastic wave induced at the surface of circumference of the elastic disk, a steel bar in contact with the surface of circumference of the elastic disk bonded onto the piezoelectric ceramic disks is driven in both directions by changing the sine and cosine voltage inputs. The stator of the motor is composed of two sheets of piezoelectric ceramic disks to bond onto both surfaces of an elastic disk, respectively. As a result, the diameter of the elastic body is increased and the resonant frequency is decreased. The resonant frequency of the stator is about 92 kHz, which is composed with piezoelectric ceramic disks of 28 mm in diameter and 2 mm in thickness, and an elastic body of 32 mm in diameter and 2 mm in thickness. A driving voltage of 20 VPP Produces 200 rpm with a torque of 1Nm and an efficiency of about 10%.

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

Measurement Conditions of Concrete Pull-off Test in Field from Finite Element Analysis (유한요소 해석을 이용한 현장 콘크리트 부착강도 측정조건)

  • Kim, Seong-Hwan;Jeong, Won-Kyong;Kwon, Hyuck;Kim, Hyoun-Oh;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.185-192
    • /
    • 2002
  • The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesive and strength measurement method ignores the effect of stress concentration from shape of specimens. Therefore, this research calculates stress concentration coefficient as the ratio of drilling depth to drilling diameter($h_s/D$), the ratio of overlay thickness to drilling diameter($h_0/D$), the ratio of steel disk thickness to drilling diameter(t/D), the ratio of overlay elastic modulus to substrate modulus($E_1/E_0$), the distance from core to corner border(L_$_{corner}$) and the distance between cores(L_$_{coic}$) vary. The finite element method is adapted to analysis The results from 'the F.E.M analysis are as follows. The stress concentration effects can be minimized when the ratio of drilling depth to drilling diameter($h_s/D$) is 0.20~0.25, the elastic modulus ratio($E_1/E_0$) is 06~1.0, and the ratio of steel disk thickness to drilling diameter(t/D) is 3.0. The overlay thickness, the distance from specimens to corner border(L_$_{corner}$), the distance between cores(L_$_{coic}$) almost do not affect to the stress concentration.

  • PDF