• Title/Summary/Keyword: steel design

Search Result 5,613, Processing Time 0.034 seconds

A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment (순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.594-601
    • /
    • 2019
  • A true MSEW abutment is an abutment type that directly supports the load of a superstructure. Metal strips, which are in-extensile reinforcements, should be used to minimize abutment deformation. A study to derive the application conditions of a True MSEW abutment was carried out by Zevogolis(2007). As a result, the pullout factor of safety of the uppermost reinforcement was estimated to be the smallest. Therefore, the pullout factor of safety of the uppermost reinforcement is the most important design factor. Parameter analysis was conducted with the abutment length, abutment heel, and abutment height as variables. The pullout factor of safety increased with increasing abutment length and abutment heel length. This is because the contact area increases and the superstructure is dispersed as the abutment length and abutment heel length increase. The pullout factor of safety converges at an abutment length of 1.2m and an abutment heel length of 0.9m. This is because the effective length of the reinforcement is reduced due to the increase in contact area. On the other hand, the extension of the superstructure will increase if the abutment length and abutment heel length are increased excessively. In addition, earth-volume is increased if the abutment height increases excessively. This acts as an upper load on the MSE wall. Therefore, it needs to be examined carefully.

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Performance Evaluation of Pull-out Load of a New Type of Double-wall Pile Foundation for Easy Demolition (기초구조물 회수가 용이한 신형식 이중벽 말뚝기초의 인발하중 성능평가)

  • Kim, Jae-Hyun;Kim, Jeong-Soo;Lee, Minjy;Sven, Falcon Sen;Choo, Yun Wook;Hwang, Sung-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.21-32
    • /
    • 2022
  • Steel pile foundations are widely used for offshore constructions due to their high bearing capacity and efficiency. Typically, offshore structures that have reached the end of their design life are required to be demolished. However, pile foundations are often left on site due to technical and economic limitations. The pile left on the site not only pollutes the environment, but can also cause obstacles for the construction of new structures. Therefore, research is required to completely eliminate these foundations at the site. In this study, a new type of double-wall pile foundation that can drastically reduce the pull-out load was conceptually proposed, and a series of model tests were performed to validate the performance of the double-wall pile foundation. The installation and extraction of the double-wall pile were simulated in dry sand in the model test, and the measured up-lift load was compared to that of the conventional pile. According to the result, the maximum up-lift load induced by the decommissioning of the double-wall pile was reduced by 45% when compared to the traditional pile in dense sand. This study verified the mechanism for reducing the up-lift load of the double-wall foundation and confirmed the possibility of completely decommissioning a pile that has reached the end of its nominal service life.

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.

Effect of insect protein and protease on growth performance, blood profiles, fecal microflora and gas emission in growing pig

  • Young Bin, Go;Ji Hwan, Lee;Byong Kon, Lee;Han Jin, Oh;Yong Ju, Kim;Jae Woo, An;Se Yeon, Chang;Dong Cheol, Song;Hyun Ah, Cho;Hae Ryoung, Park;Jin Ho, Cho;Ji Yeon, Chun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1063-1076
    • /
    • 2022
  • Two experiments were conducted to determine the effect of Hermetia illucens larvae (HIL) as protein and protease on growth performance, blood profiles, fecal microflora, and gas emission in growing pig. In experiment 1, the seventy-two crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an initial body weight (BW) of 27.98 ± 2.95 kg were randomly allotted to one of four dietary treatments (3 pigs per pen and 6 replicates pen per treatments). The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two diets (Poultry offal diets and HIL diets) without or with supplementing protease. The poultry offal in basal diet has been replaced by HIL. In experiment 2, the four crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an initial BW of 28.2 ± 0.1 kg were individually accepted in stainless steel metabolism cages. The dietary treatments included: 1) PO- (PO-; poultry offal diet), 2) PO+ (PO- + 0.05% protease), 3) HIL- (3% PO of PO- diet was replacement 3% HIL), 4) HIL+ (HIL- + 0.05% protease). In experiment 1, From weeks 0 to 2, average daily gain (ADG) and feed efficiency (G:F) were significantly increased in the PO diet group compared with the HIL group. From weeks 2 to 4, ADG and G:F were higher for protease group than for non-protease group. At weeks 2 and 4, the PO diet group had lower blood urea nitrogen (BUN) levels than HIL diet group. In experiment 2, crude protein (CP) and nitrogen (N) retention were decreased by HIL diet at weeks 2 and 4. The fecal microflora and gas emission were not affected by HIL and protease. The HIL diet showed lower CP digestibility than PO diet and total essential amino acids digestibility tended to higher in PO diet than HIL diet. In summary, the present study revealed that replacement of the PO protein with the HIL protein and the additive of protease in growing pig diets during the overall experimental period had no negative effect.

Risk of Carbon Leakage and Border Carbon Adjustments under the Korean Emissions Trading Scheme

  • Oh, Kyungsoo
    • Journal of Korea Trade
    • /
    • v.26 no.2
    • /
    • pp.45-64
    • /
    • 2022
  • Purpose - This paper examines South Korea's potential status as a carbon leakage country, and the level of risk posed by the Korean emissions trading scheme (ETS) for Korean industries. The economic effects of border carbon adjustments (BCAs) to protect energy-intensive Korean industries in the process of achieving the carbon reduction target by 2030 through the Korean ETS are also analyzed. Design/methodology - First, using the Korean Input-Output (IO) table, this paper calculates the balance of emissions embodied in trade (BEET) and the pollution terms of trade (PTT) to determine Korean industries' carbon leakage status. Analyses of the risk level posed by carbon reduction policy implementation in international trade are conducted for some sectors by applying the EU criteria. Second, using a computable general equilibrium (CGE) model, three BCA scenarios, exemption regulations (EXE), reimbursement (REB), and tariff reduction (TAR) to protect the energy-intensive industries under the Korean ETS are addressed. Compared to the baseline scenario of achieving carbon reduction targets by 2030, the effects of BCAs on welfare, carbon leakage, outputs, and trading are analyzed. Findings - As Korea's industrial structure has been transitioning from a carbon importing to a carbon leaking country. The results indicate that some industrial sectors could face the risk of losing international competitiveness due to the Korean ETS. South Korea's industries are basically exposed to risk of carbon leakage because most industries have a trade intensity higher than 30%. This could be interpreted as disproving vulnerability to carbon leakage. Although the petroleum and coal sector is not in carbon leakage, according to BEET and PTT, the Korean ETS exposes this sector to a high risk of carbon leakage. Non-metallic minerals and iron and steel sectors are also exposed to a high risk of carbon leakage due to the increased burden of carbon reduction costs embodied in the Korean ETS, despite relatively low levels of trade intensity. BCAs are demonstrated to have an influential role in protecting energy-intensive industries while achieving the carbon reduction target by 2030. The EXE scenario has the greatest impact on mitigation of welfare losses and carbon leakage, and the TAF scenario causes a disturbance in the international trade market because of the pricing adjustment system. In reality, the EXE scenario, which implies completely exempting energy-intensive industries, could be difficult to implement due to various practical constraints, such as equity and reduction targets and other industries; therefore, the REB scenario presents the most realistic approach and appears to have an effect that could compensate for the burden of economic activities and emissions regulations in these industries. Originality/value - This paper confirms the vulnerability of the Korean industrial the risk of carbon leakage, demonstrating that some industrial sectors could be exposed to losing international competitiveness by implementing carbon reduction policies such as the Korean ETS. The contribution of this paper is the identification of proposed approaches to protect Korean industries in the process of achieving the 2030 reduction target by analyzing the effects of BCA scenarios using a CGE model.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.