• 제목/요약/키워드: steel design

검색결과 5,563건 처리시간 0.028초

겹침이음 상세에 따른 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (The Experimental Study on Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice)

  • 석상근;손혁수;정철호;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.553-558
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seismic performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

겹침이음 상세에 따른 철근콘크리트 교각의 내진성능 (Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice)

  • 이재훈;손혁수;석상근;정철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.345-352
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seisimc performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

LCC를 고려한 강박스 거더의 최적설계 (Optimal Design of Steel Box Girders Considering LCC)

  • 안예준;이현섭;신영석;박장호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.339-346
    • /
    • 2004
  • This paper presents a method to minimize Life-Cycle Cost(LCC) of steel box girders. The LCC function considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A resistance force curve is derived from a condition grade curve of steel girders and optimal design of steel box girders is performed on the basis of derived resistance force curve. Also, in this paper annual costs of various case in LCC are compared and analyzed. It is concluded that the optimal design of steel box girders considering LCC by a presented method will lead to more economical and safer girders than conventional design.

  • PDF

Polymer concrete filled circular steel beams subjected to pure bending

  • Oyawa, Walter O.;Sugiura, Kunitomo;Watanabe, Eiichi
    • Steel and Composite Structures
    • /
    • 제4권4호
    • /
    • pp.265-280
    • /
    • 2004
  • In view of the mounting cost of rehabilitating deteriorating infrastructure, further compounded by intensified environmental concerns, it is now obvious that the evolvement and application of advanced composite structural materials to complement conventional construction materials is a necessity for sustainable construction. This study seeks alternative fill materials (polymer-based) to the much-limited cement concrete used in concrete-filled steel tubular structures. Polymers have been successfully used in other industries and are known to be much lighter, possess high tensile strength, durable and resistant to aggressive environments. Findings of this study relating to elasto-plastic characteristics of polymer concrete filled steel composite beams subjected to uniform bending highlight the enormous increase in stiffness, strength and ductility of the composite beams, over the empty steel tube. Moreover, polymer based materials were noted to present a wide array of properties that could be tailored to meet specific design requirements e.g., ductility based design or strength based design. Analytical formulations for design are also considered.

The Emergence of the Diagrid - It's All About the Node

  • Boake, Terri Meyer
    • 국제초고층학회논문집
    • /
    • 제5권4호
    • /
    • pp.293-304
    • /
    • 2016
  • The diagrid structural system for constructing tall buildings is a recent invention. Debuting in 2004 with the construction of the Swiss Re Tower in London, this aesthetically driven structural system has centered the perfecting of its technology on the development of the nodes that form its innovative deviation from standard steel tall framing methods. The paper examines variations in node design, understanding the linked dependence the modularity and the choice to expose the steel in the building, as well as on advances in digital modelling that allow an increasingly seamless line of communication from the engineering design through to the actual fabrication of the nodes. This advanced design and fabrication technology will be seen to have resulted in the expanded use of the technical term "node" to inform the design and construction of a range of other applications in the structuring of tall buildings, including the use of steel castings.

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

고추력용 철심형 영구자석 선형동기전동기의 운전조건을 고려한 설계 (Research on Design Characteristics of Steel-Cored PMLSM with High Thrust Force Considering Running Condition)

  • 정상용
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.85-93
    • /
    • 2007
  • 본 논문에서는 철심형 영구자석 선형동기전동기(PMLSM, Steel-Cored Permanent Magnet Linear Synchronous Motor)에서 운전 특성을 고려한 설계 특성 및 전략 등에 대한 내용을 다룬다. 특히 반송장치의 운송궤적에서 요구하는 동적특성과 전동기의 동적용량(Dynamic Capability)을 고려한 동적제약조건(Dynamic Constraints) 규정을 통하여, 짧은 변위의 급가감속 왕복운전을 위한 철심형 PMLSM의 최적설계 전략을 살펴본다. 이와 더불어 동특성이 두드러진 PMLSM의 설계특성으로 열적인 특성, 디텐트력 해석 및 저감, 그리고 자계의 포화특성에 대하여 추가 고찰한다.

Buckling-restrained brace with CFRP encasing: Mechanical behavior & cyclic response

  • Razavi, S. Ali;Kianmehr, Amirhossein;Hosseini, Abdollah;Mirghaderi, S. Rasoul
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.675-689
    • /
    • 2018
  • Buckling-restrained braces (BRBs) have received considerable attention in seismic design of various types of structures. Conventional BRBs are composed of steel core and surrounding steel tube filled with concrete. Eliminating the steel tube can be advantageous to BRB. In this study the idea of replacing the steel tube by CFRP layers in BRBs is proposed. The advantages of this type of BRB are mentioned, and its design criteria are introduced. The construction procedure of two BRB specimens is described. The specimens are uniaxially tested based on moderate, and severe earthquake levels and the performance of the specimens is investigated. The backbone curves resulted from the hysteresis curve are presented for the design proposes. The results of this study show that CFRP layers can effectively provide the expected performance of the encasing, and the proposed BRB can be considered a viable alternative to the conventional BRBs.

An assessment of code designed, torsionally stiff, asymmetric steel buildings under strong earthquake excitations

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.109-126
    • /
    • 2011
  • The inelastic earthquake response of non-symmetric, braced steel buildings, designed according to the EC3 (steel structures) and EC8 (earthquake resistant design) codes, is investigated using 1, 3 and 5-story models, subjected to a set of 10, two-component, semi-artificial motions, generated to match the design spectrum. It is found that in these buildings, the so-called "flexible" edge frames exhibit higher ductility demands and interstory drifts than the "stiff" edge frames. We note that the same results were reported in an earlier study for reinforced concrete buildings and are the opposite of what was predicted in several other studies based on the over simplified, hence very popular, one-story, shear-beam type models. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. In a follow up paper, a design modification will be introduced that can lead to a more uniform distribution of ductility demands in the elements of all building edges. This investigation is another step towards more rational design of non-symmetric steel buildings.