• Title/Summary/Keyword: steel box girder

Search Result 305, Processing Time 0.025 seconds

Optimum Design of Steel Box Girder Considering Dynamic Characteristics of LRT with Rubber Wheel (경량전철 고무차륜 AGT 하중의 동적특성을 고려한 강박스거더의 단면 최적설계)

  • Lee Hee-Up;Lee Jun S.;Bang Choon-seok;Choi Il-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1197-1204
    • /
    • 2004
  • The metropolitan cities and operation companies of urban transit railway are driving to construct the LRT(light rail transit) system because of the advantage of construction cost and environmental serviceability. This study suggests the optimal design method of steel box girder considering dynamic characteristics of LRT with rubber wheel. The behavior and design constraints are formulated based on the structural design criteria for LRT. Genetic algorithm is applied to the minimum weight design of structural system. A typical example is solved to illustrate the applicability of the proposed minimization algorithm. From the results of application example, the optimum design of steel box girder is successfully accomplished. Therefore, this system can act as a consultant to assist novice designers in the design of steel box girder for LRT with rubber wheel.

  • PDF

Industrial Photogrammetry Method for Precise Measurement of The Steel Box Girder (교량 무가조립을 위한 산업사진측량 기법)

  • 정성혁;박경식;최석근;이재기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.189-195
    • /
    • 2004
  • The purpose of this study was to establish the accuracy of the industral photogrammetry system constructed with INCA2 metric camera and V-STARS system on steel box girder measurement under industrial measurement condition. The objective of the measurement was to determine the distances of plane to plane or plane to libs, precise positions of the bolt holes and angles of the plane to plane on the steel box girder using coded targets, tape targets, edge targets and target adapters. The measurement undertaken has shown that industrial photogrammetry method were a very accurate and more importantly were produced quietly to measure the steel box girder.

  • PDF

Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization (협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm

  • Kaveh, A.;Bakhshpoori, T.;Barkhori, M.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.705-719
    • /
    • 2014
  • Composite steel-concrete box girders are frequently used in bridge construction for their economic and structural advantages. An integrated metaheuristic based optimization procedure is proposed for discrete size optimization of straight multi-span steel box girders with the objective of minimizing the self-weight of girder. The metaheuristic algorithm of choice is the Cuckoo Search (CS) algorithm. The optimum design of a box girder is characterized by geometry, serviceability and ultimate limit states specified by the American Association of State Highway and Transportation Officials (AASHTO). Size optimization of a practical design example investigates the efficiency of this optimization approach and leads to around 15% of saving in material.

Stiffened Effect of Knee Brace of Cross-Beam in Steel Box-girder Bridges (강박스거더교 가로보 니브레이스(Knee Brace)의 보강효과)

  • Gil, Heung Bae;Jang, Gab Chul;Kang, Sang Gyu;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.227-234
    • /
    • 2009
  • Recently, a knee brace is usually installed in connection between cross-beam and main-girder of steel box-girder bridges. The knee brace is installed as a structural stiffener and mainly aims to relieve stress at joints and to prevent main-girder from lateral deformation. However, research on the knee brace is insufficient to obviously evaluate the necessity. The stiffened effect of knee brace is determined by using finite element analyses. Stress distribution, stress level of members and deflection of the cross-beam are evaluated by parametric FE analysis for the installation of knee brace and the depth ratio of cross-beam/steel box girder. It is seen from comparison of numerical analysis results that the knee brace installed in cross-beam of steel boxgirders bridges is not efficient as a structural stiffener with respect to stress relief and stiffened effect.

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Landscape Preference over Single-Spaned Steel Box Girder Bridge by Bridge Shape Parameters (단경간 강박스거더교의 교량형상계수별 경관선호도 분석에 관한 연구)

  • Kim, Rak-Gi;Geum, Gi-Jeong;Yang, Gye-Seung;Im, Seong-Bin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.7-18
    • /
    • 2006
  • The Purpose of this study is to develop landscape Preference and define elements of difference in landscape preference of the 1-span Steel Box Girder Bridge by Bridge Shape Parameters(BSP) through Design of Experiments. Lately, the 1-span Steel Box Girder Bridge is dominations much component ratio and the Steel Box Girder Bridge has strong Points that is economically Profitable and management has easy when construct. but landscape preference of the 1-span Steel Box Girder Bridge was evaluated low because impression of landscape is being surfeited and dulled. Do to consider optimization in design that give change to Bridge Shape Parameters(BSP) to supplement this shortcoming in this study. Therefore, this study changes Bridge Shape Parameters(BSP) and extract elements that influence in landscape preference of the 1-span Steel Box Girder Bridge. and based on the design that consider landscape Preference of the 1-span Steel Box Girder Bridge, some essential guidelines for rational design of the 1-span Steel Box Girder Bridge suggested.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Optimal Design of Two-Span Steel Box Girder Bridges by LRFD (LRFD에 의한 2경간 강박스형교 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.173-180
    • /
    • 2001
  • In this study steel box girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height, web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. We studied the results of steel box girders and compared with those of 1-type girders. The main program is coded with C++ and connected with optimization modul ADS. which is coded with FORTRAN.

  • PDF

Longitudinal Behavior of Prestressed Steel-Box-Girder Bridge (프리스트레스를 도입한 강합성형 교량의 교축방향 거동)

  • Park, Nam Hoi;Kang, Young Jong;Lee, Man Seop;Go, Seok Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.321-329
    • /
    • 2003
  • To effectively use the cross section of concrete decks, analytical and experimental studies on prestressed steel-box-girder bridges were performed in this study. The method of applying prestress was determined in the analytical study and the longitudinal behavior of the prestressed steel-box-girder bridge was considered in the experimental study. The object model for these studies was a two-span continuous bridge. The method of applying prestress determined herein was divided into two parts: one is that apply prestress to the concrete deck at its intermediate support, and the other is that apply prestress to the lower flange of the steel-box-girder bridge at its end support. The prototype bridge for the experiment was simulated based on the rule of similitude and was fabricated according to construction steps to apply prestress effectively. From the results of the experimental study, it has demonstrated that the prestressed steel-box-girder bridge provides better performance than the general steel-box-girder bridge in view of the increase of the design live load, the reduction of the tensile stress of the concrete deck at intermediate support, and the reduction of the displacement.