• Title/Summary/Keyword: steel beam-columns

Search Result 306, Processing Time 0.025 seconds

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

The effect of RBS connection on energy absorption in tall buildings with braced tube frame system

  • Shariati, Mahdi;Ghorbani, Mostafa;Naghipour, Morteza;Alinejad, Nasrollah;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.393-407
    • /
    • 2020
  • The braced tube frame system, a combination of perimeter frame and bracing frame, is one of the systems used in tall buildings. Due to the implementation of this system in tall buildings and the high rigidity resulting from the use of general bracing, providing proper ductility while maintaining the strength of the structure when exposing to lateral forces is essential. Also, the high stress at the connection of the beam to the column may cause a sudden failure in the region before reaching the required ductility. The use of Reduced Beam Section connection (RBS connection) by focusing stress in a region away from beam to column connection is a suitable solution to the problem. Because of the fact that RBS connections are usually used in moment frames and not tested in tall buildings with braced tube frames, they should be investigated. Therefore, in this research, three tall buildings in height ranges of 20, 25 and 30 floors were modeled and designed by SAP2000 software, and then a frame in each building was modeled in PERFORM-3D software under two RBS-free system and RBS-based system. Nonlinear time history dynamic analysis is used for each frame under Manjil, Tabas and Northridge excitations. The results of the Comparison between RBS-free and RBS-based systems show that the RBS connections increased the absorbed energy level by reducing the stiffness and increasing the ductility in the beams and structural system. Also, by increasing the involvement of the beams in absorbing energy, the columns and braces absorb less energy.

Behavior of C-Shaped Beam to Square Hollow Section Column Connection in Modular Frame (모듈러 골조의 각형강관 기둥과 C형강 보 접합부의 거동 평가)

  • Lee, Sang Sup;Park, Keum Sung;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.471-481
    • /
    • 2015
  • Modular building is a prefabricated construction system for building where factory-produced pre-engineered modular units are delivered to site and assembled as substantial elements of a building. There are two basic kinds of modular structures. One is a load-bearing wall structure designed to transfer the load through longitudinal walls. The other is a frame structure composed of columns and beams. For frame structure, square hollow section is often used as a column member and channel as a beam member in modular unit. Lower and upper modules are fasten with bolts via a pre-installed access hole in the SHS column. However, the access holes can weaken the panel zone that would affect the behavior of beam to column connection. The 5 specimens of beam to column connections with parameters of access hole, column thickness and diaphragm were made and this paper describes the test results.

Structural performance by strengthening types of wood frames using H shaped steel joints (H형강 접합부를 갖는 목조 골조의 보강형식에 따른 구조성능)

  • Kim, Soon-Chul;Moon, Youn-Joon;Yang, Il-Seung;Park, Geun-Hong
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.77-83
    • /
    • 2008
  • The effective mixture of structural laminated timber and other materials is expected to extend the potentials of building structures because of the potentials to realize high performance in structural safety. The classical joint types using drift pin and bolts are occurred local failures due to the small bearing area. In result, new joints using H shaped steel were suggested in this research. The objective of this study is to evaluate elasto-plastic behaviors by strengthening types of wood frames with new joints connecting structural laminated timber with H shaped steel. A total of five specimens of about one-second scale were tested. Specimens had columns with 1,050 height and $84mm{\times}100mm$ section, and a beams with 1,950mm length and $130mm{\times}100mm$ section. Also, the specimens were stiffened by brace, hwang-toh brick, and autoclaved lightweight concrete. The results of the test showed that the specimen stiffened with autoclaved lightweight concrete was characterized by fairly good strength and stiffness than those of the other specimens. Initial stiffness of H-2.0D-NS specimen with 2 times inserting length of beam height showed 1.33 times than that of H-1.5D-NS specimen. However, the strength of H-2.0D-NS specimen has not improved too much than H-1.5D-NS specimen.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

Improving design limits of strength and ductility of NSC beam by considering strain gradient effect

  • Ho, J.C.M.;Peng, J.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.185-207
    • /
    • 2013
  • In flexural strength design of normal-strength concrete (NSC) beams, it is commonly accepted that the distribution of concrete stress within the compression zone can be reasonably represented by an equivalent rectangular stress block. The stress block it governed by two parameters, which are normally denoted by ${\alpha}$ and ${\beta}$ to stipulate the width and depth of the stress block. Currently in most of the reinforced concrete (RC) design codes, ${\alpha}$ and ${\beta}$ are usually taken as 0.85 and 0.80 respectively for NSC. Nonetheless, in an experimental study conducted earlier by the authors on NSC columns, it was found that ${\alpha}$ increases significantly with strain gradient, which means that larger concrete stress can be developed in flexure. Consequently, less tension steel will be required for a given design flexural strength, which improves the ductility performance. In this study, the authors' previously proposed strain-gradient-dependent concrete stress block will be adopted to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly-and doubly-NSC beams. Through the design charts, it can be verified that the consideration of strain gradient effect can improve significantly the flexural strength and ductility design limits of NSC beams.

Nonlinear Finite Element Analysis of Reinforced Concrete Planar Members Using Rotating Orthotropic Axes Model (이방향성 회전 직교축 모델을 이용한 철근콘크리트 면부재의 비선형 유한요소해석)

  • 박홍근
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.117-127
    • /
    • 1995
  • The objective of this research is to investigate the effectiveness of rotating orthotropic axes model in analyzing reinforced concrete planar members under cyclic as well as monotonic loading. The structural members to be addressed are moderately reinforced beams, columns, beam-column joints, and shear walls, whose failure occurs due to compressive crushing after extensive crack propagation, The rotating orthotropic axes model which is usually used for monotonic loading is developed for cyclic loading. With the existing cyclic material models of reinforcing steel and bond-slip, this material model is used for the finite element analysis. For monotonic loading, the analytical results of the rotating orthotropic axes model are compared with reinforced concrete beams which have brittle failure. For Shear wall members under cyclic loading, the analyses are compared with the experiments for the ultimate load capacity, nonlinear deformation, and pinching effect due to crack opening and closing.

  • PDF

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

Parameter Study of Buckling Behavior of Steel Built-up Column (강재 조립 기둥의 좌굴 거동에 대한 매개변수 해석)

  • Kim, Jinyong;Kim, Sung Bo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.79-87
    • /
    • 2011
  • The parameter study of buckling behavior of steel built-up column under compression force is presented in this study. The shear deformation effects due to the bending moment and shear forces are considered for the H-shaped main members along the entire built-up column and batten member connecting double H-shaped main members. The parametric study is performed according to the length of the built-up column, the distance of the H-shaped main members and the number and type of cover plate for battens, respectively. The applicability of AISC design specification of normal and high tension bolted built-up column is investigated. The buckling loads for built-up columns are compared with those obtained from the analytic solution developed in this study, AISC specification, and finite element method based on the beam and plate element, respectively.