DOI QR코드

DOI QR Code

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures

철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구

  • Choi, Kyung-Suk (Research & Development Institute, LOTTE Engineering & Construction) ;
  • Shin, Dong-Hyeon (Department of Architectural Engineering, University of Seoul) ;
  • Kim, Hyung-Joon (Department of Architectural Engineering, University of Seoul)
  • 최경석 (롯데건설(주) 기술연구원) ;
  • 신동현 (서울시립대학교 건축공학과) ;
  • 김형준 (서울시립대학교 건축공학과)
  • Received : 2020.10.25
  • Accepted : 2020.11.05
  • Published : 2020.12.31

Abstract

Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

모듈러 건축물은 철근콘크리트 및 철골 구조물에 비하여 상대적으로 경량이고, 단위 모듈간 기둥의 일체성을 기대하기 어려운 구조적 특성을 가진다. 이와 같은 구조적 특성은 모듈러 건축물의 높이가 높아짐에 따라 바람 및 지진과 같은 횡력저항성능에 직접적인 영향을 미친다. 본 연구에서는 횡력저항성능을 향상시키기 위해 긴장재를 활용한 모듈러 구조시스템을 제안하였다. 모듈러 구조시스템을 구성하는 주요 요소인 포스트텐션 기둥-바닥 접합부는 셀프 센터링 거동을 유도하기 위한 형상 및 상세를 가진다. 포스트텐션 기둥-바닥 접합부의 이력 거동을 상세히 파악하기 위해 유한요소해석을 수행하였으며, 그 결과 초기 긴장력 및 보-기둥 접합부의 접합 조건에 따라 이력 거동은 확연한 차이를 보이는 것으로 나타났다.

Keywords

References

  1. ABAQUS 6.10. (2010) Analysis User's Manual, Dassault Systemes Simulia Corp., Providence, RI, USA.
  2. AISC (2005) Seismic Provisions for Structural Steel Buildings, Chicago, IL: Americal Institute of Steel Construction.
  3. Annan, C.D., Youssef, M.A., El Naggar, M.H. (2008) Seismic Overstrength in Braced Frames of Modular Steel Buildings, J. Earthq. Eng., 13(1), pp.1-21. https://doi.org/10.1080/13632460802212576
  4. Annan, C.D., Youssef, M.A., El Naggar, M.H. (2009) Experimental Evaluation of the Seismic Performance of Modular Steel-Braced Frames, Eng. Struct., 31, pp.1435-1446. https://doi.org/10.1016/j.engstruct.2009.02.024
  5. Chi, H., Liu, J. (2012) Seismic Behavior of Post-Tensioned Column Base for Steel Self-Centering Moment Resisting Frame, J. Constr. Steel Res., 78, pp.117-130. https://doi.org/10.1016/j.jcsr.2012.07.005
  6. Christopoulos, C., Filiatrault, A., Uang, C.M., Folt, B. (2002) Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames, ASCE J. Struct. Eng., 128(9), pp.1111-1120. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111)
  7. Gorgolewski, M.T., Grubb, P.J., Lawson, R.M. (2001) Modular Construction Using Light Steel Framing : Design of Residential Buildings, Steel Construction Institut, Berkshire, England.
  8. Jung, D.I., Cho, B.H., Lee, D.Y., Jung, C.W. (2018) Seismic Performance Evaluation of Transverse Modular Building Unit with Post-tensioned Connections, Proc. Archit. Inst. Korea, 38(1), pp.581-582.
  9. Lawson, R.M., Ogden, R.G., Bergin, R. (2012) Application for Modular Construction in High-Rise Buildings, J. Archit. Eng., 18, pp.148-156. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000057
  10. Zheng, T., Lu, Y., Usmani, A., Seeam, A., Laurenson, D. (2012) Characterization and Monitoring of Seismic Performance of Post-Tensioned Steel Modular Structures, 15WCEE, Lisboa, Portugal, September.