• Title/Summary/Keyword: steam-power

Search Result 1,317, Processing Time 0.046 seconds

Design of digital nuclear power small reactor once-through steam generator control system

  • Qian, Hong;Zou, Mingyao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2435-2443
    • /
    • 2022
  • The once-through steam generator used in the small modular reactor needs to consider the stability of the outlet steam pressure and steam superheat of the secondary circuit to achieve better operating efficiency. For this reason, this paper designs a controllable operation scheme for the steam pressure and superheat of the small reactor once-through steam generator. On this basis, designs a variable universe fuzzy controller, first, design the fuzzy control rules to make the controller adjust the PI controller parameters according to the change of the error; secondly, use the domain adjustment factor to further subdivide the input and output domain of the fuzzy controller according to the change of the error, to improve the system control performance. The simulation results show that the operation scheme proposed in this paper have better system performance than the original scheme of the small reactor system, and controller proposed in this paper have better control performance than traditional PI controller and fuzzy PI controller, what's more, the designed control system also showed better anti-disturbance performance in lifting experiment between 100% and 80% working conditions. Finally, the experimental platform formed by connecting the digital small reactor with Matlab/Simulink through OPC(OLE for Process Control) communication technology also verified the feasibility of the proposed scheme.

Load Test Simulator Development for Steam Turbine-Generator System of Nuclear Power Plant

  • Jeong, Chang-Ki;Kim, Jong-An;Kim, Byung-Chul;Choi, In-Kyu;Woo, Joo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1384-1386
    • /
    • 2005
  • This paper focuses on development of load test simulator of a steam turbine-generator in a nuclear power plant. When load is taken off from electrical power network, it is very difficult to effectively control the steam flow to turbine of the nuclear turbine-generator, because of disturbances, such as electrical load and network unbalance on electrical network. Up to the present time, the conventional control system has been used for the load control on nuclear steam generator, owing to the easy control algorithms and the advantage which have been proven on the nuclear power plant. However, since there are problems with stability control during low power and start-up, only a highly experienced operator can operate during those procedures. Also, a great deal of time and an expensive simulator is needed for the training of an operator. The KEPRI is developed simulator for 600MW nuclear power plant to take a test of generator load rejection, throttle valve, and turbine load control. Total load test is implemented before start up.

  • PDF

증기터빈의 오일 휩 현상 및 대책

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.37
    • /
    • pp.18-21
    • /
    • 2004
  • There are several bearing system at large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

Rubber Material Development and Performance Evaluation of Diaphragm Seal for Steam Generator Nozzle Dam

  • Woo, Chang-Su;Song, Chi-Sung;Lee, Han-Chil;Kwon, Jin-Wook
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.222-228
    • /
    • 2020
  • Rubber materials, used in nuclear power plants, need high heat-oxidation resistance to curing or cracking under a heat aging environment. This is because they are applied to environments with high temperature, high humidity, and radiation exposure. Nuclear radiation causes additional hardening or degradation, therefore, rubber materials need radiation resistance that satisfies the general and any accidental conditions produced in the power plant. Therefore, in this study, we developed a rubber material with excellent heat and radiation resistance for the diaphragm seal of a nuclear steam generator nozzle dam. The rubber material greatly improved the reliability of the steam generator nozzle dam. In addition, 30 inch and 42 inch diaphragm seals were manufactured using the developed rubber material. A nozzle dam was installed in a nuclear power plant and tested under the same conditions as a steam generator to evaluate safety and reliability. In the future, the performance and safety of diaphragm seals developed through field tests of nuclear power plants will be evaluated and applied to currently operating and new nuclear power plants.

A Two-Dimensional Study of Transonic Flow Characteristics in Steam Control Valve for Power Plant

  • Yonezawa, Koichi;Terachi, Yoshinori;Nakajima, Toru;Tsujimoto, Yoshinobu;Tezuka, Kenichi;Mori, Michitsugu;Morita, Ryo;Inada, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • A steam control valve is used to control the flow from the steam generator to the steam turbine in thermal and nuclear power plants. During startup and shutdown of the plant, the steam control valve is operated under a partial flow conditions. In such conditions, the valve opening is small and the pressure deference across the valve is large. As a result, the flow downstream of the valve is composed of separated unsteady transonic jets. Such flow patterns often cause undesirable large unsteady fluid force on the valve head and downstream pipe system. In the present study, various flow patterns are investigated in order to understand the characteristics of the unsteady flow around the valve. Experiments are carried out with simplified two-dimensional valve models. Two-dimensional unsteady flow simulations are conducted in order to understand the experimental results in detail. Scale effects on the flow characteristics are also examined. Results show three types of oscillating flow pattern and three types of static flow patterns.

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

Thermal Stress Analysis of Piping Systems in Steam-driven Power Engines (증기 동력기관 내 배관시스템의 열응력 해석)

  • Kim, C.H.;Chung, H.T.;Bae, J.S.;Jung, I.S.;Lee, S.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.35-42
    • /
    • 2009
  • The piping systems in the steam-driven power engines lie under the cyclic condition of thermal expansion and contraction by superheated steam. These phenomena might cause some severe damages on the pipes and the accessory devices. To avoid these damages, the calculation of the proper strength and the consideration of the reduced resultant forces on the materials are needed. In the present study, numerical investigations on the effects of the thermal deformation of the industrial piping system were performed with comparison of the design data. Commercial software, ABAQUS with the thermal-fluidic loadings based on the design conditions was used for the thermal stress analysis of the piping system. From the analysis of the initially-designed pipe supporters, the rearrangement was suggested to improve the piping design.

  • PDF

The Steam Temperature Control of Renovated Boiler in 100MW Power Plant (100MW 발전소 개조 보일러의 증기온도 제어)

  • Lim, Geon-Pyo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1935-1940
    • /
    • 2011
  • The control logic of steam temperature was redesigned, tested and applied to the power plant after its steam temperature equipments had been revised. This power plant use the ancillary gas gotten in the process of making iron in the steel mill. The boiler of power plant has the superheater and reheater to make the superheated steam. The superheater and reheater have the spray valve to control their temperature. The reheater has the gas bypass damper additionally in this plant. The control logics were redesigned in cascade forms and the initial parameters of control logics were calculated from the several step tests. The final parameters could be obtained through the several repeated tests and the feedforward functions were added by temperature deviation and air flow. The power plant is being commercially-operated normally by improved control logics and It is expected that this improved controls help the efficiency improvement and safe operation of plant.

Performance Design Analysis of the Supercritical Pressure Bottoming System of Combined Cycle Power Plants Using Once-Through Steam Generator (관류형 증기발생기를 사용한 복합발전용 초임계압 하부시스템의 성능 설계해석)

  • 양진식;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1370-1377
    • /
    • 2002
  • This study analyzed the design performance of the bottoming system of combined cycle power plants using a once-through heat recovery steam generator. For a parallel arrangement of the main heater and reheater, parametric analyses were carried out to present the criteria for determining the reheater pressure and the location of the starting point of the reheater in the HRSG. The performance of the bottoming system was presented fer a range from high subcritical to supercritical pressure. The steam turbine power is as high as that of conventional triple-pressure bottoming systems. The serial arrangement of heat exchangers with division of each heater into several segments can achieve similar power level.

Development of the Large Tubesheet Forgings for Nuclear Power Plant (원자력 발전소용 대형 튜브시트 단강품의 개발)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.176-179
    • /
    • 2006
  • Large tubesheet forgings of the steam generator for the 1,400MW nuclear power plant has been developed. Steam Generator is one of the most important structural part for nuclear power plant. It is manufactured by various steel forgings such as shell, head, torus and tubesheet. These steel forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the forging process development and manufacturing experience of large tubesheet forgings which will be used for the steam generator of 1,400MW nuclear power plant.

  • PDF