• Title/Summary/Keyword: steam-power

Search Result 1,316, Processing Time 0.038 seconds

A simulation test of lone rejection for steam turbine generator in nuclear power plant (원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Tae-Woon;Lee, Ki-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2301-2303
    • /
    • 2003
  • A steam turnine in thermal/nuclear power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy. After synchronization in parallel with the power system, generator output increases according as the governor, that is the controller, increases steam flow into turbine. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip setpoint by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a simulation test of generator load rejection to be implemented on the turbine governor in a 600MW nuclear power plant before its startup.

  • PDF

Flow-Induced Vibration Test in the Preheater Region of a Steam Generator Tube Bundle

  • Kim, Beom-Shig;Hwang, Jong-Keun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.85-91
    • /
    • 1997
  • Cross-flow existing in a shell-and-tube steam generator can cause a tube to vibrate. There are four regions subjected to cross-flow in Yonggwang units 3 and 4 (YGN 3 and 4) steam generators, which are of the same design as the steam generators for Palo Verde nuclear power plant Palo Verde units 1 and 2 steam generators have experienced localized oar at the comers of the cold side recirculating fluid inlet regions. A number of design modifications were made to preclude tube failure in specific regions of YGN 3 and 4 steam generators. Therefore, flow induced vibration experiments were done to determine the vibration magnitude of tubes in the economizer tube free lane region. The objective of this experiment is to demonstrate that the tube displacement is less than 0.01 inch rms at 100% of full power flow and to quantify the remaining design margin at 120ft and 140% of full power flow.

  • PDF

Research on a Stability of Feedwater Control System after Stretched Power Uprate and Replacement Steam Generator for Ulchin Units 1&2 (울진1,2호기 출력최적화 및 증기발생기 교체가 주급수 제어계통 안정도에 미치는 영향연구)

  • Yoon, Duk-Joo;Kim, In-Hwan;Kim, Sang-Yeol
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.14-20
    • /
    • 2012
  • Full load rejection capability of nuclear power plant depends primarily on steam dump capacity (SDCAP) and steam generator level control capability. Recently, Ulchin Units 1&2 have performed stretched power uprate (SPU) and replacement steam generator (RSG) projects, which increase the power by 4.5 percent. They change major design or operating parameters and especially reduces steam dump capacity at full power due to increase of the steam flow. The reduction of SDC after SPU results in degradation of heat removal capability in full load rejection transients. Therefore, we should perform evaluation to determine whether reactor trips occur in large load rejection transients. Uchin Units 1&2 have experienced full load rejection (FLR) three times from 2004 to 2010. Operating data from the plant occurrence of FLR at Ulchin Units 1&2 showed that steam generator (SG) level transients were limiting in point of reactor trip. However the plant had never reached reactor trip in the FLR and successfully continued in house load operation. The parameters and setpoints for the SG will be changed if the SG is replaced. Therefore, we evaluated the appropriateness of steam dump, main feedwater and steam generator water level control system preventing the plant from reactor trip in case of FLR by the parameter sensitivity study whether SG water level operated smoothly after SPU and RSG projects.

Performance Analysis of the Integrated Gasification Combined Cycle Power Plant with Steam Integration (증기연계 공정을 가지는 석탄가스화 복합발전플랜트의 성능해석)

  • Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Waste heat recovery process designs and performance analyses are conducted on the IGCC(Integrated Gasification Combined Cycle) power plants integrated with two different coal gasification and gas cleanup processes by Shell and GE/Texaco. Through the analysis results, the present study provides the steam integration concept between the HRSG and the chemical processes of IGCC power plant, and investigates the effect of steam integration on the power generation of IGCC power plant. The present simulation results show less steam power output and higher overall IGCC efficiency of the Shell-based power plant than the GE/Texaco.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

The devlepment of a MPC controller for water level control in the steam generator of a nuclear power plant (원전 증기발생기 수위제어를 위한 MPC 제어기 개발)

  • 손덕현;한진욱;이환섭;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.359-359
    • /
    • 2000
  • Generally, level control in the steam generator of a nuclear power plant is difficulty process control, because the low power operating can lead nonminimum phase characteristics(swell and shrink phenomenon) and flow measurement are unreliable and nonlinear characteristics. This paper presents a framework for solving this problem based on the constrained linear model predictive control and introduces the design of method for the level of the controller in the entire operating power of the steam generator, and compares with conventional PI controller.

  • PDF

A Study on Turbine Control Algorithms for Large Steam Turbine in a Power Plant (대용량 발전소 재열재생 증기터빈 제어알고리즘에 관한 고찰)

  • Choi, In-Kyu;Jeong, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1665-1666
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Therefore after the steam turbine reaches its rated speed and the generator gets into parallel operation with power grid, the electrical power can be increased by turbine controller or governor. The first governor was invented by James Watts for the steam engine to be maintained at a constant speed. The first governor by him was mechanical type with fly balls. The electrical type governor was created due to the progress of electronic devices such as operational amplifiers or integrated circuits. and Today digital electronic type of governor is being widely used in most prime movers.

  • PDF

A realization of simulator for reliability verification on medium size steam turbine controller (중용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Woo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2578-2580
    • /
    • 2000
  • A siumlator had been developed and used for reliability verification on medium size steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valve and steam regulation valve. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

A realization of simulator for reliability verification on large steam turbine controller (대용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Jeong, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2138-2140
    • /
    • 2001
  • A siumlator had been developed and will be used for reliability verification on large steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valves and steam regulation valves. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System (과열기 관군에서의 증기유량 균일 배분 연구)

  • Park, Ho-Young;Kim, Sung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.