• Title/Summary/Keyword: steam-power

Search Result 1,317, Processing Time 0.028 seconds

Physicochemical Properties of Several Sweet Potato Starches (품종별 고구마 전분의 이화학적 특성)

  • Seog, Ho-Moon;Park, Yong-Kon;Nam, Young-Jung;Shin, Dong-Hwa;Kim, Jun-Pyong
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.179-185
    • /
    • 1987
  • The physicochemical properties and characteristics of sweet potato starches which were isolated from the six varieties were investigated. The shapes of starch granules which observed through photomicroscope and scanning electron microscope lucre round and polygonal, but those of the Shinmi were most polygonal, and the average diameters were in the range of $10.4{\sim}14.2$ microns. The amylose contents were between 25% and 28%, and blue values and alkali numbers were in the range of $0.29{\sim}0.36$, $7.0{\sim}12$, respectively. The swelling power and solubility patterns of the starches were negligible until $50^{\circ}C$, thereafter it increased rapidly and the Eunmi showed highest water binding capacity of 211.6%. Amylogram pattern of 6% starch solutions were similar to no peak viscosity, but maximum viscosity varied widely with varieties. A significant positive correlation was observed between amylose content and average gelatinization temperature. Taste and texture of the steam cooked sweet potatoes were negatively and positively correlated with moisture and amylose contents, respectively, while those of the microwave cooked sweet potatoes were only positively correlated with amylose contents.

  • PDF

Detection of Abnormal Leakage and Its Location by Filtering of Sonic Signals at Petrochemical Plant (비정상 음향신호 필터링을 통한 플랜트 가스누출 위치 탐지기법)

  • Yoon, Young-Sam;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.655-662
    • /
    • 2012
  • Gas leakage in an oil refinery causes damage to the environment and unsafe conditions. Therefore, it is necessary to develop a technique that is able to detect the location of the leakage and to filter abnormal gas-leakage signals from normal background noise. In this study, the adaptation filter of the finite impulse response (FIR) least mean squares (LMS) algorithm and a cross-correlation function were used to develop a leakage-predicting program based on LABVIEW. Nitrogen gas at a high pressure of 120 kg/$cm^2$ and the assembled equipment were used to perform experiments in a reverberant chamber. Analysis of the data from the experiments performed with various hole sizes, pressures, distances, and frequencies indicated that the background noise occurred primarily at less than 1 kHz and that the leakage signal appeared in a high-frequency region of around 16 kHz. Measurement of the noise sources in an actual oil refinery revealed that the noise frequencies of pumps and compressors, which are two typical background noise sources in a petrochemical plant, were 2 kHz and 4.5 kHz, respectively. The fact that these two signals were separated clearly made it possible to distinguish leakage signals from background noises and, in addition, to detect the location of the leakage.

Effect of Steaming and Dehydration Condition on Physicochemical Characteristics of Korean Traditional Parboiled Rice (Olbyeossal) (증자 및 건조조건이 올벼쌀의 이화학적 특성에 미치는 영향)

  • Cho, Yong Sik;Lee, Kyoung Ha;Ha, Hyun Ji;Choi, Yoon Hee;Kim, Eun Mi;Park, Shin Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.185-189
    • /
    • 2012
  • This study was conducted to investigate the effect of different steam condition and dehydration condition on physicochemical characteristics of Olbyeossal made from Waxy rice. All samples were steamed at $95-100^{\circ}C$ for 60 min or at $121^{\circ}C$ for 20 min and then were dehydrated using hot air 45, 60, $80^{\circ}C$ and sun-dried to achieve moisture contents 13-15%. Initial pasting temperature of Olbyeossal was the lower than that of nontreatment sample by parboiling. The combination in steaming $95-100^{\circ}C$ and hot drying at $45-60^{\circ}C$ was showed appropriate pasting properties compared with other condition. The hardness of Olbyeossal was significantly affected by steaming and dehydration condition. The hardness of Olbyeossal showed the higher value for steaming at $121^{\circ}C$ than $95-100^{\circ}C$. The water binding capacity (WBC) and swelling power (SP) were higher steaming at $121^{\circ}C$ than $95-100^{\circ}C$. No significant differences on WBC and SP of Olbyeossal by dehydration condition were observed. As the sensory evaluation results, the combination in steaming at $121^{\circ}C$ and hot-air drying at 45 or $80^{\circ}C$ led to increase preference for appearance, color, taste and overall acceptability. These results indicate that steaming and dehydration condition were affecting factor on physicochemical characteristics of Olbyeossal.

Study of Pool Boiling Heat Transfer on Various Surfaces with Variation of Flow Velocity (다양한 표면에서 유동 속도에 따른 풀 비등 열전달에 관한 연구)

  • Kang, Dong-Gyu;Lee, Yohan;Seo, Hoon;Jung, Dongsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, a smooth flat surface, low fin, Turbo-B, and Thermoexcel-E surfaces are used to examine the effect of the flow velocity on the pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs). HTCs and CHFs are measured on a smooth square heater of $9.53{\times}9.53mm^2$ at $60^{\circ}C$ in a pool of pure water at various fluid velocities of 0, 0.1, 0.15, and 0.2 m/s. Test results show that for all surfaces, CHFs obtained with flow are higher than those obtained without flow. CHFs of the low fin surface are higher than those of the Turbo-B and Thermoexcel-E surfaces due largely to the increase in surface area and sufficient fin spaces for the easy removal of bubbles. CHFs of the low fin surface show even 5 times higher CHFs as compared to the plain surface. On the other hand, both Turbo-B and Thermoexcel-E surfaces do not show satisfactory results because their pore sizes are too small and water bubbles easily cover them. At low heat fluxes of less than $50kW/m^2$, HTCs increase as the flow velocity increases for all surfaces. In conclusion, a low fin geometry is good for application to steam generators in nuclear power plants.

Fundamental Performance Evaluation of Recycled Aggregate Concrete with Varying Amount of Fly Ash and Recycled Fine Aggregate (순환잔골재 및 플라이애쉬 혼입률에 따른 순환골재 콘크리트의 압축강도, 염소이온 투과 및 중성화 저항성 평가)

  • Sim Jongsung;Park Cheolwoo;Moon Il-Whan;Lee Hee-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.793-801
    • /
    • 2005
  • This study investigates fundamental properties of recycled aggregate concrete which incorporated 100% recycled coarse aggregate and various amount of recycled fine aggregate. In addition, for the purpose of the improvement of long term strength and durability, a part of cement was replaced with fly ash. Compressive strength and resistance to chloride ion penetration and carbonation were investigated. When the coarse aggregate was completely replaced with the recycled the replacement ratio of the fine aggregate with the recycled was recommended to be limited below 60% in the consideration of strength. The strength of the steam-cured specimen was very comparable to the wet-cured at 28 days. As fly ash content increased the resistance to chloride ion penetration was increased. The chloride ion penetrability based on the charge passed was found to be low at 21 days and very low at 56 days, respectively. Carbonation depth and carbonation velocity coefficient increased as the fly ash content increased and the relationship between the carbonation depth and recycled fine aggregate replacement ratio was not clear. Up to 28days, however, the measured carbonation depth was mostly less than 10mm which could be considered as low.

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.402-410
    • /
    • 2012
  • A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

PbSCC of Ni-base Alloys in PbO-added Pure Water

  • Kim, Joung Soo;Yi, Yong-Sun;Kwon, Oh Chul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.316-321
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

Influence of Precooling Cooling Air on the Performance of a Gas Turbine Combined Cycle (냉각공기의 예냉각이 가스터빈 복합발전 성능에 미치는 영향)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.171-179
    • /
    • 2012
  • Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state-of-the-art F-class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off-design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.