• Title/Summary/Keyword: steam flow

Search Result 744, Processing Time 0.02 seconds

Study on the Manufacture and Characteristics of Pitch-Based Activated Carbon Fibers Using Steam Activation (수증기 유량제어에 따른 피치계 활성탄소섬유 비표면적 특성에 대한 연구)

  • Hae-Reum Shin;Seung-Jun Yeo;Woo-Seung Noh;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1333-1339
    • /
    • 2023
  • To produce activated carbon fibers, the process is carried out through either physical activation method or chemical activation method. In this study, we present the results regarding the characteristics of activated carbon fibers manufactured under various conditions through the quantitative control of steam. The yield after activation indicates a decreasing trend with the increase in steam quantity and activation time. Additionally, specific surface area characteristics exhibit variations based on activation time and steam flow rate. The SEM analysis results reveal that higher steam flow rates lead to the presence of both mesopores and macropores on the surface of activated carbon fibers (ACF).

Analysis of steam generator tube rupture accidents for the development of mitigation strategies

  • Bang, Jungjin;Choi, Gi Hyeon;Jerng, Dong-Wook;Bae, Sung-Won;Jang, Sunghyon;Ha, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.152-161
    • /
    • 2022
  • We analyzed mitigation strategies for steam generator tube rupture (SGTR) accidents using MARS code under both full-power and low-power and shutdown (LPSD) conditions. In general, there are two approaches to mitigating SGTR accidents: supplementing the reactor coolant inventory using safety injection systems and depressurizing the reactor coolant system (RCS) by cooling it down using the intact steam generator. These mitigation strategies were compared from the viewpoint of break flow from the ruptured steam generator tube, the core integrity, and the possibility of the main steam safety valves opening, which is associated with the potential release of radiation. The "cooldown strategy" is recommended for break flow control, whereas the "RCS make-up strategy" is better for RCS inventory control. Under full power, neither mitigation strategy made a significant difference except for on the break flow while, in LPSD modes, the RCS cooldown strategy resulted in lower break and discharge flows, and thus less radiation release. As a result, using the cooldown strategy for an SGTR under LPSD conditions is recommended. These results can be used as a fundamental guide for mitigation strategies for SGTR accidents according to the operational mode.

A study on the Computer-Aided Design of steam ejector (증기 이젝터의 자동설계를 위한 전산프로그램의 개발)

  • 김경근;김용모;강신돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.53-60
    • /
    • 1987
  • Steam ejector is a equipment which compresses the gases to desired discharge pressure. It is widely used for the evacuation systems because of its high working confidence. And recently it is used as the thermo-compressors in the various energy saving systems. Steam ejector is constructed of three basic parts; a suction chamber, a motive nozzle and a diffuser. The high velocity stream jet of steam emitted by the motive nozzle creats suction chamber, which draws the low pressure gases. The diffuser converts the kinetic energy of high velocity flow to pressure energy. It is not easy to determine the dimensions of a steam ejector met to the desired design condition, because that the expected suction rates must be obtained by reapeating the complicate calculation. And also such a calculation is concomitant with geometrical analysis for suction part and diffuser based on the stability of steam flow. Therefore, it is considered that the Computer-Aided Design (CAD) of steam ejector is a powerful design method. In this paper, computer program for steam ejector design is developed based on the theoretical research and the previous experimental results. And the determinating method of diffuser inlet angle and the velocity development profile of suction gas along to the diffuser are suggested. The validity of the development profile of suction gas along to the diffuser are suggested. The validity of the developed computer results with other's for the practical design calculation of a manufactured steam ejector.

  • PDF

Effect of the Steam Flow Rate on Syngas Productivity in IGCC Gasifier for a Power Generation (IGCC 발전용 가스화기에서 증기 주입량이 합성가스 생산량에 미치는 영향)

  • Keum, Kyung-Nam;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • In the study, the effect of steam injection on syngas productivity was investigated under the constant operating conditions of gasifier oxygen load while the coal feed was fixed and the steam injection flow rate is changed in Taean IGCC plant. The maximum syngas average productivity was found to be at 80 % and 90 % of gasifier oxygen loads with the steam injection flow rate of 0.14 kg/s and 0.15 kg/s per coal burner. Through this study, the syngas productivity was changed by adjusting the steam injection amount and as the steam injection flow rate increased, the syngas productivity increased and then decreased again. The syngas productivity can be increased only by steam injection without supplying additional coal and it is considered that the syngas productivity has different characteristics depending on coal type. Thus it is recommended to operate the gasifier using Carbo-One coal with the steam injection flow rate of about 0.14 kg/s per coal burner when the gasifier oxygen load is 80 % ~ 90 %.

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

The Analysis of Flow-Induced Vibration and Design Improvement in KSNP Steam Generators of UCN #5, 6

  • Kim, Sang-Nyung;Cho, Yeon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.74-81
    • /
    • 2004
  • The KSNP Steam Generators (Youngkwang Unit 3 and 4, Ulchin Unit 3 and 4) have a problem of U-tube fretting wear due to Flow Induced Vibration (FIV). In particular, the wear is localized and concentrated in a small area of upper part of U-bend in the Central Cavity region. The region has some conditions susceptible to the FIV, which are high flow velocity, high void fraction, and long unsupported span. Even though the FIV could be occurred by many mechanisms, the main mechanism would be fluid-elastic instability, or turbulent excitation. To remedy the problem, Eggcrate Flow Distribution Plate (EFDP) was installed in the Central Cavity region or Ulchin Unit 5 and 6 steam generators, so that it reduces the flow velocity in the region to a certain level. However, the cause of the FIV and the effectiveness of the EFDP was not thoroughly studied and checked. In this study, therefore the Stability Ratio (SR), which is the ratio of the actual velocity to the critical velocity, was compared between the value before the installation of EFDP and that after. Also the possibility of fluid-elastic instability of KSNP steam generator and the effectiveness of EFDP were checked based on the ATHOS3 code calculation and the Pettigrew's experimental results. The calculated results were plotted in a fluid-elastic instability criteria-diagram (Pettigrew, 1998, Fig. 9). The plotted result showed that KSNP steam generator with EFDP had the margin of Fluid-Elastic Instability by almost 25%.

Flow-induced Vibration of the CE-type Steam Generator Tube (CE형 원전 증기발생기 전열관의 유동유발진동 해석)

  • Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.828-833
    • /
    • 2001
  • In this study, an analysis tool to assess the susceptibility of steam generator tubes due to the flow-induced vibration was developed. The fluid-elastic instability analysis of the U-tube bundle for CE-type steam generator was accomplished. The effective mass distribution along the U-tube was obtained to calculate the natural frequency and dynamic mode shape. Finally, stability ratios for selected tubes are obtained.

  • PDF

Numerical Study on Geometries and Operating Parameters of a Steam Reformer for Hydrogen Production (수소 생산을 위한 수증기 개질기의 형상 변화와 작동 조건에 대한 수치해석 연구)

  • Byun, Kang-Soo;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The main objective of this paper is to investigate characteristic of steam reformer at various geometries and operating conditions. In this paper, the steam reforming is studied by a numerical method and three dimensional simulations were used for effective analytical study. User - Defined Function (UDF) was used to simultaneously calculate reforming and combustion reaction. And the numerical model is validated with experimental results at the same operating conditions. In order to understand the relationship between operating conditions such as gas hourly space velocity(GHSV), mass flow rate of combustor inlet, various numerical investigations are carries out for various geometries. Numerical results show that cylindrical geometry is more effective than rectangular geometry for heat transfer to reactors and reforming efficiency. As mass flow rate of combustor inlet increase, reaction occurs more faster and temperature increase with each geometry. On the other hand, reaction and hydrogen conversion decrease as mass flow rate of reactor decreases.

Steam Turbine Rotating Blade Design Using Quasi-3 dimensional Flow Analysis (준 3차원 유동해석을 통한 증기 터빈의 회전익 설계)

  • Cho, S.H.;Kim, Y.S.;Kwon, G.B.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r$\theta$), to (m', $\theta$) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later

  • PDF

The Effects of Combustion Parameters on the Characteristics of a Steam-Methane Reformer (연소 변수가 수증기-메탄 개질기의 특성에 미치는 영향)

  • Lee, Jae-Seong;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.29-31
    • /
    • 2012
  • The effects of combustion parameters on the characteristics of a steam-methane reformer. The reformer system was numerically simulated using a simplified two-dimensional axisymmetric model domain with an appropriate user-defined function. The fuel ratio, defined as the ratio of methane flow rate in the combustor to that in the reactor, was varied from 20 to 80%. The equivalence ratio was changed from 0.5 to 1.0. The results indicated that as the fuel ratio increased, the production rates of hydrogen and carbon monoxide increased, although their rates of increase diminished. In fact, at the highest heat supply rates, hydrogen production was actually slightly decreased. Simulations showed that equivalence ratio of 0.7 yielded the highest steam-methane mixture temperature despite a 43% higher air flow rate than the stoichiometric flow rate. This means that the production of hydrogen and carbon monoxide can be increased by adjusting the equivalence ratio, especially when the heat supply is insufficient.

  • PDF