• Title/Summary/Keyword: steam

Search Result 4,616, Processing Time 0.028 seconds

A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production (SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석)

  • BYUN, HYUN SEUNG;HAN, DANBEE;PARK, SEONGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

The Effect of Chemical Pretreatment on Steam Explosion and Oxygen-alkali Pulping of Oak Wood (참나무재의 약액함침 처리가 폭쇄 및 산소-알칼리펄프화에 미치는 영향)

  • 박승영;최태호;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • The potential of oxygen delignification is a powerful tool to reduce detrimental environmental effects. This study was performed to investigate the effect of steam explosion treatment of chemically treated oak wood on oxygen-alkali pulping. Pulp yield during steam explosion treatment by ${Na_2}{O_3}$-NaOH impregnation was higher than the other impregnation chemicals. Also, NaOH extraction at room temperature after steam explosion treatment improved the kappa number from 140~116 to 90~64. Oxygen-alkali pulping of chemical steam explosion treated woods affected to pulp yields. ${Na_2}{O_3}$-NaOH impregnation was very effective to higher carbohydrate yields at same delignification level. Its carbohydrate yield seemed to be highly related to the effluent pH. Oxygen-alkali pulping after steam explosion treatment of ${Na_2}{O_3}$-NaOH impregnated wood was shown that carbohydrate yield was very high because its effluent pH was increase from natural to mild alkali. Even if oxygen bleaching limit the delignification to 50% in order to avoid unacceptable yield and viscosity losses, oxygen-alkali pulping after steam explosion by ${Na_2}{O_3}$-NaOH impregnation was possible to extend the delignification more than 80%. Considering high pulp yield with lower lignin content from steam explosion treated wood, it might be profitable to end the cook at a high kappa number instead of a low kappa number, and continuously apply the oxygen delignification, in order to better quality pulp.

  • PDF

A Study on the Performance of Steam Ejector by Variation of Steam Pressure (증기압력 변화에 따른 증기 이젝터의 성능에 관한 연구)

  • Jun You-Sin;Shin You-Sik;Jin Zhen Hua;Jeong Hyo-Min;Chung Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.761-766
    • /
    • 2006
  • This paper describes a study on the performance of steam ejector by variation of steam pressure. Water temperature is especially important for good qualify of fish in an inland aquafam. In summer season, the water temperature increases above $25^{\circ}C$, but for good quality breeding or fish is the maintenance of optimum aquafam temperature by about $20^{\circ}C$. Therefore it is needed to drop the water temperature to provide suitable conditions of fish growth. There are many kinds of cooling system, in this study using steam ejector. After cooling the water in vacuum tank with the steam ejector then circulate this water to inland aquafam. In this way to minimizes fish stress that it is caused by water temperature. The objective of research confirms the difference of the case which there is no water in the vacuum tank and has water in the vacuum tank. The purpose of this paper is to examine the effects on the performance of steam ejector by variation of steam pressure.

  • PDF

Experimental study on the condensation of sonic steam in the underwater environment

  • Meng, Zhaoming;Zhang, Wei;Liu, Jiazhi;Yan, Ruihao;Shen, Geyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.987-995
    • /
    • 2019
  • Steam jet condensation is of great importance to pressure suppression containment and automatic depressurization system in nuclear power plant. In this paper, the condensation processes of sonic steam jet in a quiescent subcooled pool are recorded and analyzed, more precise understanding are got in direct contact condensation. Experiments are conducted at atmospheric pressure, and the steam is injected into the subcooled water pool through a vertical nozzle with the inner diameter of 10 mm, water temperature in the range of $25-60^{\circ}C$ and mass velocity in the range of $320-1080kg/m^2s$. Richardson number is calculated based on the conservation of momentum for single water jet and its values are in the range of 0.16-2.67. There is no thermal stratification observed in the water pool. Four condensation regimes are observed, including condensation oscillation, contraction, expansion-contraction and double expansion-contraction shapes. A condensation regime map is present based on steam mass velocity and water temperature. The dimensionless steam plume length increase with the increase of steam mass velocity and water temperature, and its values are in the range of 1.4-9.0. Condensation heat transfer coefficient decreases with the increase of steam mass velocity and water temperature, and its values are in the range of $1.44-3.65MW/m^2^{\circ}C$. New more accurate semi-empirical correlations for prediction of the dimensionless steam plume length and condensation heat transfer coefficient are proposed respectively. The discrepancy of predicted plume length is within ${\pm}10%$ for present experimental results and ${\pm}25%$ for previous researchers. The discrepancy of predicted condensation heat transfer coefficient is with ${\pm}12%$.

Automated Analysis Technique Developed for Detection of ODSCC on the Tubes of OPR1000 Steam Generator

  • Kim, In Chul;Nam, Min Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.6
    • /
    • pp.519-523
    • /
    • 2013
  • A steam generator (SG) tube is an important component of a nuclear power plant (NPP). It works as a pressure boundary between the primary and secondary systems. The integrity of a SG tube can be assessed by an eddy current test every outage. The eddy current technique(adopting a bobbin probe) is currently the main technique used to assess the integrity of the tubing of a steam generator. An eddy current signal analyst for steam generator tubes continuously analyzes data over a given period of time. However, there are possibilities that the analyst conducting the test may get tired and cause mistakes, such as: missing indications or not being able to separate a true defect signal from one that is more complicated. This error could lead to confusion and an improper interpretation of the signal analysis. In order to avoid these possibilities, many countries of opted for automated analyses. Axial ODSCC (outside diameter stress corrosion cracking) defects on the tubes of OPR1000 steam generators have been found on the tube that are in contract with tube support plates. In this study, automated analysis software called CDS (computer data screening) made by Zetec was used. This paper will discuss the results of introducing an automated analysis system for an axial ODSCC on the tubes of an OPR1000 steam generator.

Development of Learning Criteria and Contents Analysis of Clothing Domain in Technology and Home Economics for STEAM Education (융합인재교육(STEAM)을 위한 중학교 기술·가정교과 의생활 영역의 학습준거 개발 및 내용분석)

  • Park, Eun-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.18 no.2
    • /
    • pp.145-159
    • /
    • 2016
  • This study developed the learning criteria for Science, Technology, Engineering, Arts & Mathematics to establish the theoretical background of the education pursued by STEAM. The learning criteria was developed on a basis of 6 kinds of Technology Home Economics textbooks by 2009 Amended Curriculum, and the factors of STEAM were extracted according to related contents. From the results of this study, the unit 'Dress and Self-expression' assimilated T.E.A.M with learning related to clothing psychology, consumer behavior, fashion design, and Korean fashion. The unit 'eco-friendly clothing and fixing clothes' was found to assimilate S.T.E.A.M. with learning related to clothes science and dress structure. Accordingly we can understand this unit also consists of the S. T. E. A. M assimilation such as clothes science, fashion marketing, dress structure, dress aesthetics, design and so on. Both units 'dress and self-expression' and 'eco-friendly clothing and fixing clothes' were found to consist of suggesting situations, creative planning and emotional experience following the learning criteria of STEAM. Therefore, these units will be the basic material for developing STEAM programs centering upon 'Home Economics' among the curriculum.

  • PDF

A Study on the Measurement of Fracture Resistance Characteristics for Steam Generator Tubes (증기발생기 세관의 파괴저항 특성 측정에 관한 연구)

  • Chang Yoon-Suk;Huh Nam-Su;Ahn Min-Yong;Hwang Seong-Sik;Kim Joung-Soo;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.420-427
    • /
    • 2006
  • The structural and leakage integrity of steam generator tubes should be sustained against all postulated loads even if a crack is present. During the past three decades, most of the efforts with respect to integrity evaluation of steam generator tubes have been focused on limit load solutions but, recently, the applicability of elastic-plastic fracture mechanics was examined cautiously due to its effectiveness. The purpose of this paper is to introduce a testing method to estimate fracture resistance characteristics of steam generator tubes with a through-wall crack. Due to limited thickness and diameter, inevitably, the steam generator tubes themselves were tested instead of standard specimen or alternative ones. Also, a series of three dimensional elastic-plastic finite element analyses were carried out to derive closed-form estimation equations with respect to J-integral and crack extension for direct current potential drop method. Since the effectiveness of $J_{IC}$ as well as J-R curves was proven through comparison with those of standard specimens taken from pipes, it is believed that the proposed scheme can be utilized as an efficient tool for integrity evaluation of cracked steam generator tubes.

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

Hardening Properties of Hardener-Free Epoxy-Modified Mortars by Curing Conditions (양생조건에 따른 경화제 무첨가 에폭시수지 혼입 PMM의 경화특성)

  • Lee, Jae-Hwa;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.255-257
    • /
    • 2012
  • Epoxy resin without any hardener can harden in the presence of hydroxide ions in cement mortars and concretes at ambient temperature. The purpose of present study is to examine the hardening properties of hardener-free epoxy-modified mortars by curing conditions. The hardener-free epoxy-modified mortars using diglycidyl ether of A epoxy resin are prepared with various polymer-cement ratios, and subjected to initial moist/dry curing, initial steam(90℃) curing, initial steam/heat(80℃, 100℃) curing.As a result, degree of hardening of epoxy resin in initial moist/dry cured, initial steam cured and initial steam/heat(80℃) cured hardener-free epoxy-modified mortars is decreased with increasing polymer-cement ratio. However, it is markedly improved with additional dry-curing periods. On the other hand, regardless of the polymer-cement ratio and dry curing periods, degree of hardening of hardener-free epoxy-modified mortars with initial steam/heat(100℃) cure is over 95%.

  • PDF

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.