• Title/Summary/Keyword: steady-state multiplicity

Search Result 10, Processing Time 0.021 seconds

Analysis of steady-states and dynamic characteristics of a continuous MMA/MA copolymerization reactor (연속식 MMA/MA 공중합 반응기의 정상상태 및 동특성 해석)

  • 박명준;안성모;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.309-312
    • /
    • 1997
  • The dynamic characteristics of a continuous MMA/MA free-radical solution copolymerization reactor were studied. A mathematical model was developed and kinetic parameters which had been estimated in the previous work were used. With this model, bifurcation diagrams were constructed with various parameters as the bifurcation parameter to predict the region of stable operating conditions and to enhance the controller performance. It was shown that the steady-state multiplicity existed over wide ranges of residence time and jacket inlet temperature. Periodic solution branches were found to emanated from Hopf bifurcation points. Under certain conditions isola was also observed, which would result in poor performance of feedback controllers.

  • PDF

A Necessary and Sufficient Condition for Multiplicity of Steady-State Solutions of Point-Kinetics Reactor Feedback Svstems (점동특성시스템이 다중의 정상상태해를 갖기 위한 필요충분조건)

  • Yang, Chae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.463-469
    • /
    • 1995
  • The point-kinetics reactor system which is subject to feedback effects may have multiple steady-state solutions for some operating conditions. A necessary and sufficient condition for multiple steady-state solutions of the point-kinetics reactor feedback system for an external input reactivity is obtained through their theoretical approach. If and only if the steady-state feedback reactivity of the reactor system is not strictly monotonic on some values of the feedback variables, then the reactor system has multiple steady-state solutions for the equilibrium operating conditions corresponding to the values of the feedback variables. Also, if and only if the steady--state feedback reactivity is strictly monotonic on all the feedback variables, then the reactor system has only one steady-state solution for all the operating conditions.

  • PDF

Controlling Mammalian Cell Metabolism in Bioreactors

  • Hu, Wei-Shou;Weichang, Zhou;Lilith F. Europa
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • Animal cells in culture typically convert most of the glucose they consume into lactate. The accumulation of lactate, however, is commonly cited as one of the factors that inhibit cell growth and limit the maximum cell concentration that can be achieved in culture. The specific production of lactate and the amount of glucose converted to lactate can be reduced when cells are grown in a fed-batch culture in which the residual glucose concentration is maintained at low levels. Such a fed-batch culture was used to grow and adapt hybridoma cells into a low-lactate-producing state before changing into continuous culture. The cells reached and maintained a high viable cell concentration at steady state. In a similar manner, cells that were initially grown in batch culture and a glucose-rich environment reached a steady state with a cell concentration that is much lower. The feed composition and dilution rates for both cultures were similar, suggesting steady state multiplicity. From a processing perspective the desired steady state among those is the one with the least metabolite production. At such seady state nutrient concentration in the feed can be further increased to increase cell and product concentrations without causing the metabolite inhibitory effect typically seen in a cell culture. Controlling cell metabolism in a continuous culture to reduce or eliminate waste metabolite production may significantly improve the productivity of mammalian cell culture processes.

  • PDF

Nonlinear Dynamics of Homogeneous Azeotropic Distillations

  • Lee, Moonyong;Cornelius Dorn;Manfred Morari
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.461-467
    • /
    • 1998
  • In spite of significant nonlinearities even in the simplest model, some types of steady-state and dynamic behavior common for nonlinear systems have never been associated with distillation columns. In recent years, multiplicity of steady states has been a subject of much research and is now widely accepted. Subsequently, stability of steady states has been explored. Another phenomenon that. although widely observed in chemical reactors, has not been associated with models of distillation columns is the existence of periodic oscillations. In this article we study the steady-state and dynamic behavior of the azeotropic distillation of the ternary homogeneous system methanol-methyl butyrate-toluene. Our simulations reveal nonlinear behavior not reported in earlier studies. Under certain conditions, the open-loop distillation system shows a sustained oscillation associated with branching to periodic solutions. The limit cycles are accompanied by traveling waves inside the column. Significant underdamped oscillations are also observed over a wide range of product rates.

  • PDF

Effect of Boundary Condition History on the Symmetry Breaking Bifurcation of Wall-Driven Cavity Flows

  • Cho, Ji-Ryong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2077-2081
    • /
    • 2005
  • A symmetry breaking nonlinear fluid flow in a two-dimensional wall-driven square cavity taking symmetric boundary condition after some transients has been investigated numerically. It has been shown that the symmetry breaking critical Reynolds number is dependent on the time history of the boundary condition. The cavity has at least three stable steady state solutions for Re=300-375, and two stable solutions if Re>400. Also, it has also been showed that a particular solution among several possible solutions can be obtained by a controlled boundary condition.

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.

Steady states and dynamic behavior of an LDPE autoclave reactor

  • Lee, Jin-Suk;Chang, Kil-Sang;Kim, Jae-Yeon;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.813-818
    • /
    • 1989
  • A two compartmented autoclave reactor for the polymerization of low density polyethylene is analyzed with respect to the effects of heat transfer and operation variables. Each compartment being considered as a completely mixed cell, two CSTRs model is proposed. The system shows various multiplicity features of steady state and periodic oscillatory motions. Heat removal efficiency and initiator supplement appear to have significant effect on the conversion of monomer with the temperature properly maintained, which should be taken into account in the reactor design.

  • PDF

Liquid Level System Realizing Van de Vusse Reactor Dynamics and its Control Experiments (Van de Vusse 반응기 동특성을 구현하는 액위시스템 및 제어 실험)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • Van de Vusse reactors show the maximum points in input-output steady state maps and dramatic changes in their dynamic characteristics around those maximum points. According to their operating regions, there appear sign changes in steady state gains and nonlinear characteristics such as non-minimum phase dynamics which cause difficulties in applying controllers. Many nonlinear controllers that are available and newly designed are applied to these Van de Vusse reactor processes and their performances are tested. Reactor examples with real reactions have been reported. However, due to difficulties in constructing and operating chemical reactor systems, they are not adequate to be used for real applications of control experiments and hence most of results are based on simulations studies. Here, we propose a liquid level system that realizes most of the steady state and dynamic characteristics of Van de Vusse reactor, and two nonlinear control methods that can be used as base methods to compare nonlinear controllers newly designed. Liquid level experimental system and two nonlinear control methods are very simple and can be used to test performances of nonlinear controllers in practice.

Modeling and analysis of an LDPE autoclave reactor with axial dispersion

  • Park, Seung-Koo;Wi, Jeong-Ho;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1693-1698
    • /
    • 1991
  • An axial dispersion model is developed for the slim reactor employed in the LDPE autoclave process so that imperfect mixing caused by large L/D ratio (10-20) may be quantified by Peclet number. The model is then used to investigate the effect of mixing on the reactor performance represented by the monomer conversion, the reactor temperature, the molecular weight, and the polydispersity. In addition, the existence of steady state multiplicity is identified with the initiator feed concentration or the feed temperature as the bifurcation parameter. The effects of the initiator feed concentration and the feed temperature are also examined.

  • PDF

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF