• Title/Summary/Keyword: steady states

Search Result 226, Processing Time 0.027 seconds

A simulation of steady and dynamic states of methanol reforming reaction (메탄올 개질반응의 정상 및 동특성 모사)

  • 김경미;최영순;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.395-398
    • /
    • 1989
  • A two dimensional pseudo-homogeneous model for the methanol reforming reaction was developed and its steady and dynamic states were studied by a computer simulation. The reactor tube diameter, the catalyst density in the fixed bed, the feed flow rate, the feed temperature and the external temperature were chosen to be adjusted to determine the length of the reactor. The dynamics of the reactor showed that the system was highly nonlinear and sensitive to the feed disturbances.

  • PDF

Design of A Speech Recognition System using Hidden Markov Models (은닉 마코프 모델을 이용한 음성 인식 시스템 설계)

  • Lee, Chul-Won;Lim, In-Chil
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.108-115
    • /
    • 1996
  • This paper proposes an algorithm and a model topology for the connected speech recognition using Discrete Hidden Markov Models. A proposed model uses diphone and triphone model which consider the recognition rate and recognisable vocabulary. Considering more exact inter- phoneme segmentation and execution speed of algorithm, 4 states have to exist in diphone model where the first state and the last state are keeping a steady state, the other states hold a transient state. 7 states have to exist in triphone model where 7 states are specified and improved to 3 steady states and 4 transition states. Also, the proposed speech recognition algorithm is designed to detect the inter-phoneme segmentation during the recognition processing.

  • PDF

Thermal Analysis of Vehicle Radiator (차량용 라디에이터의 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This study analyzes the thermal stress at automotive radiators on steady and transient states. The maximum displacement is shown at the lower corner of upper tank with the value of 0.51mm. The displacement becomes smaller at the center of radiator and it becomes larger at this edge. The maximum thermal stress with the value of 62 MPa is shown at the contact between upper tank and cooling plate. Thermal maximum stress with the transient state at the elapsed time of 10 second is lower than that at steady state as much as 0.7%.

  • PDF

Stability Analysis ofn HTS Current Lead with Constant Safety Factor (안전율이 일정한 초전도 전류도입선의 안정성해석)

  • Seol, Seoung-Yun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.15-19
    • /
    • 2000
  • The stability of variable cross-sectional area HTS current lead is considered. The cross-sectional area is varied to have a constant safety factor which is defined as the ratio of operating current and critical current of superconductor. As the constant area HTS lead, the variable cross-sectional area HTS lead also has three steady states above the bifurcation point and only one steady state below the bifurcation point. The temperature profiles and current sharing ratios for each steady state are calculated. The heat dissipation into cryogenic system for super-conducting, intermediate, and upper states are compared. For Bi-2333 sheathed with silver-gold alloy 2m length of current lead, and the maximum temperature of upper state seems to be burn-out free below 5m length.

  • PDF

Hierarchical Feedback Control of Large-Scale Discrete-Time Systems with Coupled States and Inputs (상태 및 입력이 결합된 대규모 이산시간 시스템의 계층적 궤환제어)

  • 김경연;전기준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.470-477
    • /
    • 1990
  • Singh's multi-level method is extended to the optimal tracking control of a large interconnected dynamical system which has coupled states and coupled inputs. The steady-state tracking error and a convergence condition for the extended multi-level method are derived analytically and the results show that the steady-state tracking error and a convergence rate have to be compromised. Also, a new multi-level method which is advantageous over the Singh's method in steady-state tracking error and computational burden is proposed by introducing nominal inputs into the performance index. The resulting feedback gain matrix and the compensation vector are optimal for all initial conditions so that eventual on-line computation is minimal.

  • PDF

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-II: Applications by Coupling with COREDAX

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.660-672
    • /
    • 2016
  • In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare $k_{eff}$ eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences.

Thermal Stress Analysis of Disk Rotor by Configuration of Bike Brake (자전거 브레이크에서의 디스크 로터의 형상별 열응력 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.287-291
    • /
    • 2015
  • This study investigates the result of thermal stress analysis on disk rotor by classes at bike brake. In the analysis result of thermal deformation at the steady state, maximum deformations at models 1, 2 and 3 are 0.14347mm, 0.15823mm and 0.16028mm respectively. The deformation becomes larger as the field goes on from the center to the outside at disk rotor. As there are models 1, 2 and 3 in the order of maximum deformation, model 1 has safest among three models. In the analysis result of thermal stress at steady and transient states, there are models 1, 2 and 3 in the order of maximum stress. Model 1 becomes most excellent on strength and safety among three models. By using the analysis result of disk rotor model at bike disk, it is possible to design the model applied practically at the safe driving of bike.

Estimation of the Separate Primary and Secondary Leakage Inductances of a Y-Δ Transformer Using Least Squares Method

  • Kang, Yong-Cheol;Lee, Byung-Eun;Hwang, Tae-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.538-544
    • /
    • 2010
  • This paper proposes an estimation algorithm for the separate primary and secondary leakage inductances of a three phase $Y-\Delta$ transformer using least squares method. The voltage equations from the primary and secondary windings are combined into a differential equation to estimate the separate primary and secondary leakage inductances in order to use the line current of the delta winding. Separate primary and secondary leakage inductances are obtained by applying least squares method to the differential equation. The performance of the proposed algorithm is validated under transient states, such as magnetic inrush and overexcitation, as well as in the steady state with various cut-off frequencies of low-pass filter. The proposed technique can accurately generate separate leakage inductances both in the steady and transient states.

Development and Applications on Power Electronic Circuit Analysis Program PECAP (전력전자회로 해석프로그램 PECAP 개발과 응용)

  • 정태경;차귀수;함송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.10
    • /
    • pp.335-340
    • /
    • 1983
  • The analysis of static power converter circuit using state-space method is presented. Semiconductors are modeled in two-state resistors depending on their ON or OFF states. Then the modes of circuit are determined according to the conducting states of semiconductors and different describing matrices are given automatically for each mode. Newton-Raphson algorithm is used as an iterative method for obtaining steady-state solution and an adjoint network is introduced for the efficient and accurate evaluation of the Jacobi matrix in the algorithm. Using the porogram exploited from the above algorithm, it is shown through examples that the results are in good agreement with the analytic solutions and computation time is considerably reduced for obtaining the steady-state solutions.

  • PDF

Discretization of laser model with bifurcation analysis and chaos control

  • Qamar Din;Waqas Ishaque;Iqra Maqsood;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper investigates the dynamics and stability of steady states in a continuous and discrete-time single-mode laser system. By using an explicit criteria we explored the Neimark-Sacker bifurcation of the single mode continuous and discrete-time laser model at its positive equilibrium points. Moreover, we discussed the parametric conditions for the existence of period-doubling bifurcations at their positive steady states for the discrete time system. Both types of bifurcations are verified by the Lyapunov exponents, while the maximum Lyapunov ensures chaotic and complex behaviour. Furthermore, in a three-dimensional discrete-time laser model, we used a hybrid control method to control period-doubling and Neimark-Sacker bifurcation. To validate our theoretical discussion, we provide some numerical simulations.